
One-Shot Video Object Segmentation

S. Caelles1,* K.-K. Maninis1,∗ J. Pont-Tuset1 L. Leal-Taixé2 D. Cremers2 L. Van Gool1

1ETH Zürich 2TU München

Figure 1. Example result of our technique: The segmentation of the first frame (red) is used to learn the model of the specific object to

track, which is segmented in the rest of the frames independently (green). One every 20 frames shown of 90 in total.

Abstract

This paper tackles the task of semi-supervised video ob-

ject segmentation, i.e., the separation of an object from the

background in a video, given the mask of the first frame.

We present One-Shot Video Object Segmentation (OSVOS),

based on a fully-convolutional neural network architecture

that is able to successively transfer generic semantic infor-

mation, learned on ImageNet, to the task of foreground seg-

mentation, and finally to learning the appearance of a sin-

gle annotated object of the test sequence (hence one-shot).

Although all frames are processed independently, the re-

sults are temporally coherent and stable. We perform ex-

periments on two annotated video segmentation databases,

which show that OSVOS is fast and improves the state of the

art by a significant margin (79.8% vs 68.0%).

1. Introduction

From PreTrained Networks...

Convolutional Neural Networks (CNNs) are revolution-

izing many fields of computer vision. For instance, they

have dramatically boosted the performance for problems

like image classification [24, 47, 19] and object detec-

tion [15, 14, 26]. Image segmentation has also been taken

over by CNNs recently [29, 23, 51, 3, 4], with deep architec-

tures pre-trained on the weakly related task of image classi-

fication on ImageNet [44]. One of the major downsides of

deep network approaches is their hunger for training data.

Yet, with various pre-trained network architectures one may

ask how much training data do we really need for the spe-

cific problem at hand? This paper investigates segmenting

an object along an entire video, when we only have one sin-

gle labeled training example, e.g. the first frame.

*First two authors contributed equally

...to OneShot Video Object Segmentation

This paper presents One-Shot Video Object Segmenta-

tion (OSVOS), a CNN architecture to tackle the problem

of semi-supervised video object segmentation, that is, the

classification of all pixels of a video sequence into back-

ground and foreground, given the manual annotation of one

(or more) of its frames. Figure 1 shows an example result

of OSVOS, where the input is the segmentation of the first

frame (in red), and the output is the mask of the object in

the 90 frames of the sequence (in green).

The first contribution of the paper is to adapt the CNN to

a particular object instance given a single annotated image

(hence one-shot). To do so, we adapt a CNN pre-trained on

image recognition [44] to video object segmentation. This

is achieved by training it on a set of videos with manually

segmented objects. Finally, it is fine-tuned at test time on a

specific object that is manually segmented in a single frame.

Figure 2 shows the overview of the method. Our proposal

tallies with the observation that leveraging these different

levels of information to perform object segmentation would

stand to reason: from generic semantic information of a

large amount of categories, passing through the knowledge

of the usual shapes of objects, down to the specific proper-

ties of a particular object we are interested in segmenting.

The second contribution of this paper is that OSVOS pro-

cesses each frame of a video independently, obtaining tem-

poral consistency as a by-product rather than as the result of

an explicitly imposed, expensive constraint. In other words,

we cast video object segmentation as a per-frame segmen-

tation problem given the model of the object from one (or

various) manually-segmented frames. This stands in con-

trast to the dominant approach where temporal consistency

plays the central role, assuming that objects do not change

too much between one frame and the next. Such meth-

ods adapt their single-frame models smoothly throughout

1

R
es

u
lt

s
o

n
 f

ra
m

e
N

o
f

te
st

 s
eq

u
en

ce

Base Network
Pre-trained on ImageNet

1

Parent Network
Trained on DAVIS training set

2

Test Network
Fine-tuned on frame 1 of test sequence

3

Figure 2. Overview of OSVOS: (1) We start with a pre-trained base CNN for image labeling on ImageNet; its results in terms of segmen-

tation, although conform with some image features, are not useful. (2) We then train a parent network on the training set of DAVIS; the

segmentation results improve but are not focused on an specific object yet. (3) By fine-tuning on a segmentation example for the specific

target object in a single frame, the network rapidly focuses on that target.

the video, looking for targets whose shape and appearance

vary gradually in consecutive frames, but fail when those

constraints do not apply, unable to recover from relatively

common situations such as occlusions and abrupt motion.

In this context, motion estimation has emerged as a

key ingredient for state-of-the-art video segmentation algo-

rithms [49, 42, 17]. Exploiting it is not a trivial task how-

ever, as one e.g. has to compute temporal matches in the

form of optical flow or dense trajectories [5], which can be

an even harder problem.

We argue that temporal consistency was needed in the

past, as one had to overcome major drawbacks of the then

inaccurate shape or appearance models. On the other hand,

in this paper deep learning will be shown to provide a suffi-

ciently accurate model of the target object to produce tem-

porally stable results even when processing each frame in-

dependently. This has some natural advantages: OSVOS

is able to segment objects through occlusions, it is not lim-

ited to certain ranges of motion, it does not need to process

frames sequentially, and errors are not temporally propa-

gated. In practice, this allows OSVOS to handle e.g. inter-

laced videos of surveillance scenarios, where cameras can

go blind for a while before coming back on again.

Our third contribution is that OSVOS can work at var-

ious points of the trade-off between speed and accuracy.

In this sense, it can be adapted in two ways. First, given

one annotated frame, the user can choose the level of fine-

tuning of OSVOS, giving him/her the freedom between a

faster method or more accurate results. Experimentally, we

show that OSVOS can run at 181 ms per frame and 71.5%

accuracy, and up to 79.7% when processing each frame in

7.83 s. Second, the user can annotate more frames, those

on which the current segmentation is less satisfying, upon

which OSVOS will refine the result. We show in the exper-

iments that the results indeed improve gradually with more

supervision, reaching an outstanding level of 84.6% with

two annotated frames per sequence, and 86.9% with four,

from 79.8% from one annotation.

Technically, we adopt the architecture of Fully Con-

volutional Networks (FCN) [12, 27], suitable for dense

predictions. FCNs have recently become popular due to

their performance both in terms of accuracy and compu-

tational efficiency [27, 8, 9]. Arguably, the Achilles’ heel

of FCNs when it comes to segmentation is the coarse scale

of the deeper layers, which leads to inaccurately localized

predictions. To overcome this, a large variety of works

from different fields use skip connections of larger feature

maps [27, 18, 51, 30], or learnable filters to improve upscal-

ing [34, 52]. To the best of our knowledge, this work is the

first to use FCNs for the task of video segmentation.

We perform experiments on two video object segmen-

tation datasets (DAVIS [37] and Youtube-Objects [41, 20])

and show that OSVOS significantly improves the state of

the art 79.8% vs 68.0%. Our technique is able to process a

frame of DAVIS (480×854 pixels) in 102 ms. By increasing

the level of supervision, OSVOS can further improve its re-

sults to 86.9% with just four annotated frames per sequence,

thus providing a vastly accelerated rotoscoping tool.

All resources of this paper, including training and test-

ing code, pre-computed results, and pre-trained models

are publicly available at www.vision.ee.ethz.ch/

˜cvlsegmentation/osvos/.

2. Related Work

Video Object Segmentation and Tracking: Most of the

current literature on semi-supervised video object segmen-

tation enforces temporal consistency in video sequences to

propagate the initial mask into the following frames. First of

all, in order to reduce the computational complexity some

works make use of superpixels [6, 17], patches [42, 11],

or even object proposals [38]. Märki et al. [33] cast the

problem into a bilateral space in order to solve it more ef-

ficiently. After that, an optimization using one of the pre-

vious aggregations of pixels is usually performed; which

can consider the full video sequence [38, 33], a subset of

www.vision.ee.ethz.ch/~cvlsegmentation/osvos/
www.vision.ee.ethz.ch/~cvlsegmentation/osvos/

frames [17], or only the results in frame n to obtain the mask

in n + 1 [42, 6, 11]. As part of their pipeline, some of the

methods include the computation of optical flow [17, 42],

which considerably reduces speed. Concurrent works have

also used deep learning to address Video Object Segmenta-

tion. MaskTrack [22] learns to refine the detected masks

frame by frame, by using the detections of the previous

frame, along with Optical Flow and post-processing with

CRFs. In [21], the authors combine training of a CNN with

ideas of bilateral filtering. Different from those approaches,

OSVOS is a simpler pipeline which segments each frame

independently, and produces more accurate results, while

also being significantly faster.

In the case of visual tracking (bounding boxes instead

of segmentation) Nam and Han [32] use a CNN to learn a

representation of the object to be tracked, but only to look

for the most similar window in frame n+1 given the object

in frame n. In contrast, our CNN learns a single model from

frame 1 and segments the rest of the frames from this model.

FCNs for Segmentation: Segmentation research has

closely followed the innovative ideas of CNNs in the last

few years. The advances observed in image recogni-

tion [24, 47, 19] have been beneficial to segmentation in

many forms (semantic [27, 34], instance- level [14, 39, 8],

biomedical [43], generic [29], etc.). Many of the current

best performing methods have in common a deep architec-

ture, usually pre-trained on ImageNet, trainable end-to-end.

The idea of dense predictions with CNNs was pioneered

by [12] and formulated by [27] in the form of Fully Convo-

lutional Networks (FCNs) for semantic segmentation. The

authors noticed that by changing the last fully connected

layers to 1 × 1 convolutions it is possible to train on im-

ages of arbitrary size, by predicting correspondingly-sized

outputs. Their approach boosts efficiency over patch-based

approaches where one needs to perform redundant compu-

tations in overlapping patches. More importantly, by re-

moving the parameter-intensive fully connected layers, the

number of trainable parameters drops significantly, facili-

tating training with relatively few labeled data.

In most CNN architectures [24, 47, 19], activations of

the intermediate layers gradually decrease in size, because

of spatial pooling operations or convolutions with a stride.

Making dense predictions from downsampled activations

results in coarsely localized outputs [27]. Deconvolutional

layers that learn how to upsample are used in [34, 52].

In [39], activations from shallow layers are gradually in-

jected into the prediction to favor localization. However,

these architectures come with many more trainable param-

eters and their use is limited to cases with sufficient data.

Following the ideas of FCNs, Xie and Tu [51] separately

supervised the intermediate layers of a deep network for

contour detection. The duality between multiscale contours

and hierarchical segmentation [1, 40] was further studied by

Maninis et al. [29] by bringing CNNs to the field of generic

image segmentation. In this work we explore how to train

an FCN for accurately localized dense prediction based on

very limited annotation: a single segmented frame.

3. One-Shot Deep Learning

Let us assume that one would like to segment an object in

a video, for which the only available piece of information is

its foreground/background segmentation in one frame. In-

tuitively, one could analyze the entity, create a model, and

search for it in the rest of the frames. For humans, this very

limited amount of information is more than enough, and

changes in appearance, shape, occlusions, etc. do not pose

a significant challenge, because we leverage strong priors:

first “It is an object,” and then “It is this particular object.”

Our method is inspired by this gradual refinement.

We train a Fully Convolutional Neural Network (FCN)

for the binary classification task of separating the fore-

ground object from the background. We use two successive

training steps: First we train on a large variety of objects,

offline, to construct a model that is able to discriminate the

general notion of a foreground object, i.e., “It is an object.”

Then, at test time, we fine-tune the network for a small num-

ber of iterations on the particular instance that we aim to

segment, i.e., “It is this particular object.” The overview of

our method is illustrated in Figure 2.

3.1. Endtoend trainable foreground FCN

Ideally, we would like our CNN architecture to satisfy

the following criteria:

1. Accurately localized segmentation output, as dis-

cussed in Section 2.

2. Relatively small number of parameters to train from a

limited amount of annotation data.

3. Relatively fast testing times.

We draw inspiration from the CNN architecture of [30],

originally used for biomedical image segmentation. It is

based on the VGG [47] network, modified for accurately

localized dense prediction (Point 1). The fully-connected

layers needed for classification are removed (Point 2), and

efficient image-to-image inference is performed (Point 3).

The VGG architecture consists of groups of convolutional

plus Rectified Linear Units (ReLU) layers grouped into 5

stages. Between the stages, pooling operations downscale

the feature maps as we go deeper into the network. We con-

nect convolutional layers to form separate skip paths from

the last layer of each stage (before pooling). Upscaling op-

erations take place wherever necessary, and feature maps

from the separate paths are concatenated to construct a vol-

ume with information from different levels of detail. We

linearly fuse the feature maps to a single output which has

the same dimensions as the image, and we assign a loss

function to it. The proposed architecture is shown in Fig-

ure 4 (1), foreground branch.

The pixel-wise cross-entropy loss for binary classifica-

tion (we keep the notation of Xie and Tu [51]) is in this case

defined as:

L (W)=−
∑

j

yj logP (yj=1|X;W)+(1−yj)log (1−P (yj=1|X;W))

=−
∑

j∈Y+

logP (yj=1|X;W)−
∑

j∈Y
−

logP (yj=0|X;W)

where W are the standard trainable parameters of a CNN,

X is the input image, yj ∈ 0, 1, j = 1, .., |X| is the pixel-

wise binary label of X , and Y+ and Y− are the positive

and negative labeled pixels. P (·) is obtained by applying a

sigmoid to the activation of the final layer.

In order to handle the imbalance between the two binary

classes, Xie and Tu [51] proposed a modified version of the

cost function, originally used for contour detection (we drop

W for the sake of readability):

Lmod=−β
∑

j∈Y+

logP (yj=1|X)− (1−β)
∑

j∈Y
−

logP (yj=0|X) (1)

where β = |Y−|/|Y |. Equation 1 allows training for imbal-

anced binary tasks [23, 51, 29, 30].

3.2. Training details

Offline training: The base CNN of our architecture [47]

is pre-trained on ImageNet for image labeling, which has

proven to be a very good initialization to other tasks [27,

51, 23, 29, 18, 52]. Without further training, the network

is not capable of performing segmentation, as illustrated in

Figure 2 (1). We refer to this network as the “base network.”

We therefore further train the network on the binary

masks of the training set of DAVIS, to learn a generic no-

tion of how to segment objects from their background, their

usual shapes, etc. We use Stochastic Gradient Descent

(SGD) with momentum 0.9 for 50000 iterations. We aug-

ment the data by mirroring and zooming in. The learning

rate is set to 10−8, and is gradually decreased. After offline

training, the network learns to segment foreground objects

from the background, as illustrated in Figure 2 (2). We refer

to this network as the “parent network.”

Online training/testing: With the parent network avail-

able, we can proceed to our main task (“test network” in

Figure 2 (3)): Segmenting a particular entity in a video,

given the image and the segmentation of the first frame. We

proceed by further training (fine-tuning) the parent network

for the particular image/ground-truth pair, and then testing

on the entire sequence, using the new weights. The timing

of our method is therefore affected by two times: the fine-

tuning time (once per annotated mask) and the segmenta-

tion of all frames (once per frame). In the former we have a

Figure 3. Qualitative evolution of the fine tuning: Results at 10

seconds and 1 minute per sequence.

trade-off between quality and time: the more iterations we

allow the technique to learn, the better results but the longer

the user will have to wait for results. The latter does not de-

pend on the training time: OSVOS is able to segment each

480p frame (480× 854) in 102 ms.

Regarding the fine-tuning time, we present two differ-

ent modes: One can either need to fine-tune online, by seg-

menting a frame and waiting for the results in the entire

sequence, or offline, having access to the object to segment

beforehand. Especially in the former mode, there is the need

to control the amount of time dedicated to training: the more

time allocated for fine-tuning, the more the user waits and

the better the results are. In order to explore this trade-off,

in our experiments we train for a period between 10 seconds

and 10 minutes per sequence. Figure 3 shows a qualitative

example of the evolution of the results’ quality depending

on the time allowed for fine-tuning.

In the experiments section, Figure 8 quantifies this evo-

lution. Ablation analysis shows that both offline and online

training are crucial for good performance: If we perform

our online training directly from the ImageNet model, the

performance drops significantly. Only dropping the online

training for a specific object also yields a significantly worse

performance, as already transpired from Figure 2 (2).

3.3. Contour snapping

In the field of image classification [24, 47, 19], where

our base network was designed and trained, spatial invari-

ance is a design choice: no matter where an object appears

in the image, the classification result should be the same.

This is in contrast to the accurate localization of the ob-

ject contours that we expect in (video) object segmentation.

Despite the use of skip connections [27, 18, 51, 30] to mini-

mize the loss of spatial accuracy, we observe that OSVOS’s

segmentations have some room for improvement in terms

of contour localization. We propose two different strategies

to improve the results in this regard.

First, we propose the use of the Fast Bilateral Solver

(FBS) [2] to snap the background prediction to the im-

age edges. It performs a Gaussian smoothing in the

five-dimensional color-location space, which results in a

smoothing of the input signal (foreground segmentation)

that preserves the edges of the image. It is useful in practice

because it is fast (≈60 ms per frame), and it is differentiable

so it can be included in an end-to-end trainable deep learn-

Boundary Snapping
Snap the foreground mask to accurate contours

3

Foreground Branch
Specific object - Less accurate contours

1

Contour Branch
Accurate contours - Generic objects

2

Figure 4. Two-stream FCN architecture: The main foreground

branch (1) is complemented by a contour branch (2) which im-

proves the localization of the boundaries (3).

ing architecture. The drawback of this approach, though, is

that it preserves naive image gradients, i.e. pixels with high

Euclidean differences in the color channels.

To overcome this limitation, our second approach snaps

the results to learned contours instead of simple image gra-

dients. To this end, we propose a complementary CNN in a

second branch, that is trained to detect object contours. The

proposed architecture is presented in Figure 4: (1) shows

the main foreground branch, where the foreground pixels

are estimated; (2) shows the contour branch, which detects

all contours in the scene (not only those of the foreground

object). This allows us to train offline, without the need

to fine-tune on a specific example online. We used the ex-

act same architecture in the two branches, but training for

different losses. We noticed that jointly training a network

with shared layers for both tasks rather degrades the ob-

tained results thus we kept the computations for the two ob-

jectives uncorrelated. This allows us to train the contour

branch only offline and thus it does not affect the online

timing. Since there is need for high recall in the contours,

we train on the PASCAL-Context [31] database, which pro-

vides contour annotations for the full scene of an image.

Finally, in the boundary snapping step (Figure 4 (3), we

compute superpixels that align to the computed contours (2)

by means of an Ultrametric Contour Map (UCM) [1, 40],

which we threshold at a low value. We then take a fore-

ground mask (1) and we select superpixels via majority vot-

ing (those that overlap with the foreground mask over 50%)

to form the final foreground segmentation.

In this second case, we trade accuracy for speed, since

the snapping process takes longer (400 ms instead of 60 ms

per frame), but we achieve more accurate results. Both re-

finement processes result in a further boost in performance,

and are fully modular, meaning that depending on the re-

quirements one can choose not to use them, sacrificing ac-

curacy for execution time, since both modules come with a

small, yet avoidable computational overhead.

4. Experimental Validation

Databases, state-of-the-art, and measures: The main

part of our experiments is done on the recently-released

DAVIS database [37], which consists of 50 full-HD video

sequences with all of their frames segmented with pixel-

level accuracy. We use three measures: region similarity in

terms of intersection over union (J), contour accuracy (F),

and temporal instability of the masks (T). All evaluation

results are computed on the validation set of DAVIS.

We compare to a large set of state-of-the-art meth-

ods, including two very recent semi-supervised techniques,

OFL [49], BVS [33], as well as the methods originally

compared on the DAVIS benchmark: FCP [38], JMP [11],

HVS [17], SEA [42], and TSP [6]. We also add the unsuper-

vised techniques: FST [36], SAL [46], KEY [25], MSG [5],

TRC [13], CVOS [48], and NLC [10]. We add two in-

formative bounds: the quality that an oracle would reach

by selecting the best segmented object proposal out of two

state-of-the-art techniques (COB [29] and MCG [40]), and

by selecting the best superpixels from COB (COB|SP).

For completeness, we also experiment on Youtube-

objects [41], manually segmented by Jain and Grau-

man [20]. We compare to OFL [49], BVS [33], LTV [35],

HBT [16], AFS [50], SCF [20], and JFS [45] and take the

pre-computed evaluation results from previous work.

Ablation Study on DAVIS: To analyze and quantify the

importance and need of each of the proposed blocks of

our algorithm, Table 1 shows the evaluation of OSVOS

compared to ablated versions without each of its building

blocks. Each column shows: the original method without

boundary snapping (-BS), without pre-training the parent

network on DAVIS (-PN), or without performing the one-

shot learning on the specific sequence (-OS). In smaller and

italic font we show the loss (in blue) or gain (in red) on each

metric with respect to our final approach.

We can see that both the pre-training of the parent net-

work and the one-shot learning play an important role (we

lose 15.2 and 27.3 points in J without them, respectively).

Removing both, i.e., using the Imagenet raw CNN, the re-

sults in terms of segmentation (J =17.6%) are completely

random. The boundary snapping adds 2.4 points of im-

Measure Ours -BS -PN-BS -OS-BS -PN-OS-BS

Mean M ↑ 79.8 77.4 2.4 64.6 15.2 52.5 27.3 17.6 62.2

J Recall O ↑ 93.6 91.0 2.6 70.5 23.2 57.7 35.9 2.3 91.3

Decay D ↓ 14.9 17.4 2.5 27.8 13.0 −1.9 16.7 1.8 13.1

Mean M ↑ 80.6 78.1 2.5 66.7 13.9 47.7 32.9 20.3 60.4

F Recall O ↑ 92.6 92.0 0.6 74.4 18.3 47.9 44.7 2.4 90.2

Decay D ↓ 15.0 19.4 4.5 26.4 11.4 0.6 14.3 2.4 12.6

T Mean M ↓ 37.6 33.5 4.0 60.9 23.3 53.8 16.2 46.0 8.4

Table 1. Ablation study on DAVIS: Comparison of OSVOS

against downgraded versions without some of its components.

Semi-Supervised Unsupervised Bounds

Measure Ours OFL BVS FCP JMP HVS SEA TSP FST NLC MSG KEY CVOS TRC SAL COB|SP COB MCG

Mean M ↑ 79.8 68.0 60.0 58.4 57.0 54.6 50.4 31.9 55.8 55.1 53.3 49.8 48.2 47.3 39.3 86.5 79.3 70.7
J Recall O ↑ 93.6 75.6 66.9 71.5 62.6 61.4 53.1 30.0 64.9 55.8 61.6 59.1 54.0 49.3 30.0 96.5 94.4 91.7

Decay D ↓ 14.9 26.4 28.9 −2.0 39.4 23.6 36.4 38.1 0.0 12.6 2.4 14.1 10.5 8.3 6.9 2.8 3.2 1.3

Mean M ↑ 80.6 63.4 58.8 49.2 53.1 52.9 48.0 29.7 51.1 52.3 50.8 42.7 44.7 44.1 34.4 87.1 75.7 62.9
F Recall O ↑ 92.6 70.4 67.9 49.5 54.2 61.0 46.3 23.0 51.6 51.9 60.0 37.5 52.6 43.6 15.4 92.4 88.5 76.7

Decay D ↓ 15.0 27.2 21.3 −1.1 38.4 22.7 34.5 35.7 2.9 11.4 5.1 10.6 11.7 12.9 4.3 2.3 3.9 1.9

T Mean M ↓ 37.6 21.7 34.5 29.6 15.3 35.0 14.9 41.2 34.3 41.4 29.1 25.2 24.4 37.6 64.1 27.4 44.1 69.8

Table 2. DAVIS Validation: OSVOS versus the state of the art, and practical bounds.

0 20 40 60 80 100

Ours

-BS

FP-Close FP-Far FN

Figure 5. Error analysis of our method: Errors divided into False

Positives (FP-Close and FP-Far) and False Negatives (FN). Values

are total error pixels relative to the error in the -BS case.

provement, and is faster than conventional methods such as

adding a CRF on top of the segmentation [7].

Figure 5 further analyzes the type of errors that OSVOS

produces (with and without boundary snapping), by divid-

ing them into False Positives (FP) and False Negatives (FN).

FP are further divided into close and far, setting the division

at 20 pixels from the object. We can observe that the ma-

jority of the errors come from false negatives. Boundary

snapping mainly reduces the false positives, both the ones

close to the boundaries (more accurate contours) and the

spurious detections far from the object, because they do not

align with the trained generic contours.

Comparison to the State of the Art on DAVIS: Table 2

compares OSVOS to the rest of the state of the art. In terms

of region similarity J , OSVOS is 11.8 points above the sec-

ond best technique and 19.8 above the third best. In terms of

contour accuracy F , OSVOS is 17.2 and 21.8 points above

them. Our results are better than those obtained by an ora-

cle selecting the best object proposal from the state-of-the-

art object proposals COB. Even if the oracle would select

the best set of superpixels to form each mask (COB|SP),

OSVOS would be only 6.7 points below.

Table 3 shows an evaluation with respect to different at-

tributes annotated in the DAVIS dataset, by comparing the

performance of the methods on the sequences with a given

attribute (challenge) versus the performance on those with-

out it. OSVOS has the best performance on all attributes,

and it has a significant resilience to these challenges (small-

est decrease of performance when the attribute is present -

numbers in italics).

Figure 6 shows the results per sequence compared to the

Attr Ours OFL BVS FCP JMP HVS SEA

AC 80.6 −1.2 56.6 17.6 48.6 17.6 52.8 8.6 52.4 7.0 41.4 20.4 43.2 11.1

DB 74.3 6.5 44.3 27.9 31.9 33.0 53.4 5.9 40.7 19.1 42.9 13.9 31.1 22.7

FM 76.5 5.1 49.6 28.2 44.8 23.3 50.7 11.9 45.2 18.0 34.5 31.0 30.9 30.1

MB 73.7 11.0 55.5 22.8 53.7 11.5 50.9 13.6 50.9 11.1 42.3 22.5 39.3 20.3

OCC 77.2 3.7 67.3 1.0 67.3−10.4 49.2 13.2 45.1 16.9 48.7 8.5 38.2 17.5

Table 3. Attribute-based performance: Quality of the tech-

niques on sequences with a certain attribute and the gain with

respect to this quality in the sequences without it (in italics and

smaller font). See DAVIS [37] for the meaning of the acronyms.

state of the art. OSVOS has the best performance in the ma-

jority of sequences and is very close to the best in the rest.

The results are especially impressive in sequences such as

Drift-Chicane or Bmx-Trees, where the majority of tech-

niques fail. Figure 7 shows the qualitative results on these

two sequences. In the first row, the problem is especially

challenging because of the smoke and the small initial size

of the car. In the second row, OSVOS’ worse sequence,

despite vastly outperforming the rest of techniques. In this

case, OSVOS loses track of the biker when he is occluded,

but recovers when he is visible again. The rest of techniques

lose the object because of the heavy occlusions.

Number of training images (parent network): To eval-

uate how much annotated data are needed to retrain a par-

ent network, Table 4 shows the performance of OSVOS (-

BS) when using a subset of the DAVIS train set. We ran-

domly selected a fixed percentage of the annotated frames

in each video. We conclude that by using only ~200 anno-

Training data 100 200 600 1000 2079

Quality (J) 74.6 76.9 77.2 77.3 77.4

Table 4. Amount of training data: Region similarity (J) as a

function of the number of training images. Full DAVIS is 2079.

tated frames, we are able to reach almost the same perfor-

mance than when using the full DAVIS train split, thus not

requiring full video annotations for the training procedure.

Timing: The computational efficiency of video object

segmentation is crucial for the algorithms to be usable in

practice. OSVOS can adapt to different timing require-

ments, providing progressively better results the more time

Car-Roundabout
Cows

Blackswan

Car-Shadow Dog
Goat

Parkour
Camel

Drift-
Chicane

Motocross-J
ump

Soapbox
Libby

Horsejump-High

Scooter-Black

Breakdance

Kite-Surf

Drift-
Straight

Dance-Twirl

Paragliding-Launch

Bmx-Trees
0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

Ours

OFL [49]

BVS [33]

FCP [38]

JMP [11]

HVS [17]

SEA [42]

TSP [6]

Figure 6. DAVIS Validation: Per-sequence results of region similarity (J).

D
ri

ft
-C

h
ic

an
e

B
m

x
-T

re
es

Figure 7. Qualitative results: First row, an especially difficult sequence which OSVOS segments well. Second row, OSVOS’ worst result.

we can afford, by letting the fine-tuning algorithm at test

time do more or fewer iterations. To show this behavior,

Figure 8 shows the quality of the result with respect to the

time it takes to process each 480p frame. As introduced be-

fore, OSVOS’ time can be divided into the fine-tuning time

plus the time to process each frame independently. The

first mode we evaluate is -OS-BS (), in which we do not

fine-tune to the particular sequence, and thus use the parent

network directly. In this case, the quality is not very good

(although comparable to some previous techniques), but we

only need to do a forward pass of the CNN for each frame.

.1 1 10

.5

.6

.7

.8

Time per frame (s)

R
eg

io
n

si
m

il
ar

it
y

(J
)

-OS-BS

Ours

-BS

Ours Pre

-BS Pre

BVS [33]

HVS [17]

SEA [42]

JMP [11]

OFL [49]

Figure 8. Quality versus timing: Region similarity with respect

to the processing time per frame.

To take into account the fine-tuning time, we can con-

sider two scenarios. First, in Ours () or -BS ()

we average the fine-tuning time (done once per sequence)

over the length of that sequence. This way, the curves show

the gain in quality with respect to the fine-tuning time, plus

the forward pass on each frame. Using the same notation

than in the ablation study, the two different curves refer to

whether we do not perform boundary snapping (-BS) or we

snap to the learned contours (Ours). The better results come

at the price of adding the snapping cost so depending on the

needed speed, one of the two can be chosen.

Since OSVOS processes frames independently, one

could also perform the fine-tuning offline, by training on a

picture of the object to be segmented beforehand (e.g. take

a picture of a racing horse before the race). In this scenario,

OSVOS can process each frame by one forward pass of the

CNN (Ours Pre , -BS Pre), and so be considerably fast.

Compared to other techniques, OSVOS is significantly

faster and/or more accurate at all regimes, from fast modes:

74.7 versus 60.0 of BVS () at 400 ms, and 79.8 versus 68.0
of OFL () at lower speeds.

Refinement of results: Another advantage of our tech-

nique is that we can naturally incorporate more supervision

in the form of more annotated frames. In a production en-

vironment, for instance, one needs a certain quality below

which results are not usable. In this scenario, OSVOS can

provide the results with one annotated frame, then the oper-

ator can decide whether the quality is good enough, and if

not, segment another frame. OSVOS can then incorporate

that knowledge into further fine-tuning the result.

To model this scenario, we take the results with N man-

ual annotations, select the frame in which OSVOS per-

forms worse, similarly to what an operator would do, i.e.

select a frame where the result is not satisfactory; and add

the ground-truth annotation into the fine-tuning. Table 5

shows the evolution of the quality when more annotations

are added (0 means we test the parent network directly,

i.e. zero-shot). We can see that the quality significantly in-

creases from one to two annotations and saturates at around

Annotations 0 1 2 3 4 5 All

Quality (J) 58.5 79.8 84.6 85.9 86.9 87.5 88.7

Table 5. Progressive refinement: Quality achieved with respect

to the number of annotated frames OSVOS trains from.

(a) Annotated frame 0 (c) Annotated frame 88 (e) Annotated frame 46

(b) Result frame 35 (d) Result frame 35 (f) Result frame 35

Figure 9. Qualitative incremental results: The segmentation on

frame 35 improves after frames 0, 88, and 46 are annotated.

five. As a measure of the upper bound of OSVOS, we fine-

tuned on all annotated frames and tested on the same ones

(last column), which indeed shows us that five annotated

frames almost get the most out of this architecture.

Figure 9 shows a qualitative example of this process,

where the user annotates frame 0, where only one camel

is visible (a). In frame 35, OSVOS also segments the sec-

ond camel that appears (b), which has almost the exact same

appearance. This can be solved (f) by annotating two more

frames, 88 (c) and 46 (e), which allows OSVOS to learn

the difference between these two extremely similar objects,

even without taking temporal consistency into account.

Evaluation as a tracker: Video object segmentation

could also be evaluated as a Visual Object Tracking

(VOT) [28] algorithm, by computing the bounding box

around each of the segmentations. We compare to the win-

ner of the VOT Challenge 2015 [28]: MDNET [32]. Since

we cannot compare in the original dataset of the VOT Chal-

lenge (the ground-truth objects are not segmented so we

cannot fine-tune on it), we run MDNET on DAVIS. Ta-

ble 6 shows the percentage of bounding boxes coming from

each technique that have an intersection over union with the

ground-truth bounding box above different thresholds. The

higher the threshold, the more alignment with the ground

truth is required. We can see that OSVOS has significant

better results as tracker than MDNET at all regimes, with

more margin at higher thresholds.

Results on Youtube-Objects: For completeness, we also

do experiments on Youtube-objects [41, 20], where we take

the pre-computed evaluation from other papers. Table 7

shows that we perform slightly better than the state of the art

OFL, which is significantly slower, and despite the fact that

the sequences in this database have significant less occlu-

Overlap 0.5 0.6 0.7 0.8 0.9

Ours 78.2 72.2 65.8 59.4 49.6

MDNET [32] 66.4 57.8 43.4 29.5 14.7

Table 6. Evaluation as a tracker: Percentage of bounding boxes

that match with the ground truth at different levels of overlap.

Category Ours OFL JFS BVS SCF AFS FST HBT LTV

Aeroplane 88.2 89.9 89.0 86.8 86.3 79.9 70.9 73.6 13.7

Bird 85.7 84.2 81.6 80.9 81.0 78.4 70.6 56.1 12.2

Boat 77.5 74.0 74.2 65.1 68.6 60.1 42.5 57.8 10.8

Car 79.6 80.9 70.9 68.7 69.4 64.4 65.2 33.9 23.7

Cat 70.8 68.3 67.7 55.9 58.9 50.4 52.1 30.5 18.6

Cow 77.8 79.8 79.1 69.9 68.6 65.7 44.5 41.8 16.3

Dog 81.3 76.6 70.3 68.5 61.8 54.2 65.3 36.8 18.0

Horse 72.8 72.6 67.8 58.9 54.0 50.8 53.5 44.3 11.5

Motorbike 73.5 73.7 61.5 60.5 60.9 58.3 44.2 48.9 10.6

Train 75.7 76.3 78.2 65.2 66.3 62.4 29.6 39.2 19.6

Mean 78.3 77.6 74.0 68.0 67.6 62.5 53.8 46.3 15.5

Table 7. Youtube-Objects evaluation: Per-category mean inter-

section over union (J).

sions and motion than in DAVIS, which favors techniques

that enforce temporal consistency.

5. Conclusions

Deep learning approaches often require a huge amount

of training data in order to solve a specific problem such

as segmenting an object in a video. Quite in contrast, hu-

man observers can solve similar challenges with only a sin-

gle training example. In this paper, we demonstrate that

one can reproduce this capacity of one-shot learning in a

machine: Based on a network architecture pre-trained on

generic datasets, we propose One-Shot Video Object Seg-

mentation (OSVOS) as a method which fine-tunes it on

merely one training sample and subsequently outperforms

the state-of-the-art on DAVIS by 11.8 points. Interestingly,

our approach does not require explicit modeling of tempo-

ral consistency using optical flow algorithms or temporal

smoothing and thus does not suffer from error propagation

over time (drift). Instead, OSVOS processes each frame of

the video independently and gives rise to highly accurate

and temporally consistent segmentations. All resources of

this paper can be found at www.vision.ee.ethz.ch/

˜cvlsegmentation/osvos/

Acknowledgements: Research funded by the EU Frame-

work Programme for Research and Innovation Horizon

2020 (Grant No. 645331, EurEyeCase), the Swiss Com-

mission for Technology and Innovation (CTI, Grant No.

19015.1 PFES-ES, NeGeVA), and the ERC Consolidator

Grant “3D Reloaded”. The authors gratefully acknowledge

support by armasuisse and thank NVidia Corporation for

donating the GPUs used in this project.

www.vision.ee.ethz.ch/~cvlsegmentation/osvos/
www.vision.ee.ethz.ch/~cvlsegmentation/osvos/

References

[1] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Con-

tour detection and hierarchical image segmentation. TPAMI,

33(5):898–916, 2011. 3, 5

[2] J. T. Barron and B. Poole. The fast bilateral solver. In ECCV,

2016. 4

[3] G. Bertasius, J. Shi, and L. Torresani. High-for-low and low-

for-high: Efficient boundary detection from deep object fea-

tures and its applications to high-level vision. In ICCV, 2015.

1

[4] G. Bertasius, J. Shi, and L. Torresani. Semantic segmentation

with boundary neural fields. In CVPR, 2016. 1

[5] T. Brox and J. Malik. Object segmentation by long term

analysis of point trajectories. In ECCV, 2010. 2, 5

[6] J. Chang, D. Wei, and J. W. Fisher III. A video representation

using temporal superpixels. In CVPR, 2013. 2, 3, 5, 7

[7] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Semantic image segmentation with deep con-

volutional nets and fully connected CRFs. In ICLR, 2015.

6

[8] J. Dai, K. He, Y. Li, S. Ren, and J. Sun. Instance-sensitive

fully convolutional networks. In ECCV, 2016. 2, 3

[9] J. Dai, Y. Li, K. He, and J. Sun. R-FCN: Object detection via

region-based fully convolutional networks. In NIPS, 2016. 2

[10] A. Faktor and M. Irani. Video segmentation by non-local

consensus voting. In BMVC, 2014. 5

[11] Q. Fan, F. Zhong, D. Lischinski, D. Cohen-Or, and B. Chen.

Jumpcut: Non-successive mask transfer and interpolation for

video cutout. ACM Trans. Graph., 34(6), 2015. 2, 3, 5, 7

[12] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning

hierarchical features for scene labeling. TPAMI, 35(8):1915–

1929, 2013. 2, 3

[13] K. Fragkiadaki, G. Zhang, and J. Shi. Video segmentation by

tracing discontinuities in a trajectory embedding. In CVPR,

2012. 5

[14] R. Girshick. Fast R-CNN. In ICCV, 2015. 1, 3

[15] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014. 1

[16] M. Godec, P. M. Roth, and H. Bischof. Hough-based track-

ing of non-rigid objects. CVIU, 117(10):1245–1256, 2013.

5

[17] M. Grundmann, V. Kwatra, M. Han, and I. A. Essa. Effi-

cient hierarchical graph-based video segmentation. In CVPR,

2010. 2, 3, 5, 7

[18] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-

columns for object segmentation and fine-grained localiza-

tion. In CVPR, 2015. 2, 4

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 1, 3, 4

[20] S. D. Jain and K. Grauman. Supervoxel-consistent fore-

ground propagation in video. In ECCV, 2014. 2, 5, 8

[21] V. Jampani, R. Gadde, and P. V. Gehler. Video propagation

networks. In CVPR, 2017. 3

[22] A. Khoreva, F. Perazzi, R. Benenson, B. Schiele, and

A. Sorkine-Hornung. Learning video object segmentation

from static images. In CVPR, 2017. 3

[23] I. Kokkinos. Pushing the boundaries of boundary detection

using deep learning. In ICLR, 2016. 1, 4

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 1, 3, 4

[25] Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video

object segmentation. In ICCV, 2011. 5

[26] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, and S. Reed.

SSD: Single shot multibox detector. In ECCV, 2016. 1

[27] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015. 2, 3, 4

[28] M. Kristan et al. The visual object tracking VOT2015 chal-

lenge results. In Visual Object Tracking Workshop 2015 at

ICCV 2015, Dec 2015. 8

[29] K. Maninis, J. Pont-Tuset, P. Arbeláez, and L. Van Gool.

Convolutional oriented boundaries. In ECCV, 2016. 1, 3,

4, 5

[30] K. Maninis, J. Pont-Tuset, P. Arbeláez, and L. Van Gool.

Deep retinal image understanding. In MICCAI, 2016. 2,

3, 4

[31] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fi-

dler, R. Urtasun, and A. Yuille. The role of context for object

detection and semantic segmentation in the wild. In CVPR,

2014. 5

[32] H. Nam and B. Han. Learning multi-domain convolutional

neural networks for visual tracking. In CVPR, 2016. 3, 8

[33] N. Nicolas Märki, F. Perazzi, O. Wang, and A. Sorkine-

Hornung. Bilateral space video segmentation. In CVPR,

2016. 2, 5, 7

[34] H. Noh, S. Hong, and B. Han. Learning deconvolution net-

work for semantic segmentation. In ICCV, 2015. 2, 3

[35] P. Ochs, J. Malik, and T. Brox. Segmentation of moving

objects by long term video analysis. TPAMI, 36(6):1187–

1200, 2014. 5

[36] A. Papazoglou and V. Ferrari. Fast object segmentation in

unconstrained video. In ICCV, 2013. 5

[37] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool,

M. Gross, and A. Sorkine-Hornung. A benchmark dataset

and evaluation methodology for video object segmentation.

In CVPR, 2016. 2, 5, 6

[38] F. Perazzi, O. Wang, M. Gross, and A. Sorkine-Hornung.

Fully connected object proposals for video segmentation. In

ICCV, 2015. 2, 5, 7

[39] P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollár. Learn-

ing to refine object segments. In ECCV, 2016. 3

[40] J. Pont-Tuset, P. Arbeláez, J. T. Barron, F. Marques, and

J. Malik. Multiscale combinatorial grouping for image seg-

mentation and object proposal generation. TPAMI, 2017. 3,

5

[41] A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Fer-

rari. Learning object class detectors from weakly annotated

video. In CVPR, 2012. 2, 5, 8

[42] S. A. Ramakanth and R. V. Babu. Seamseg: Video object

segmentation using patch seams. In CVPR, 2014. 2, 3, 5, 7

[43] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convo-

lutional networks for biomedical image segmentation. In

MICCAI, 2015. 3

[44] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. IJCV, 2015. 1

[45] N. Shankar Nagaraja, F. R. Schmidt, and T. Brox. Video

segmentation with just a few strokes. In ICCV, 2015. 5

[46] J. Shen, W. Wenguan, and F. Porikli. Saliency-Aware

geodesic video object segmentation. In CVPR, 2015. 5

[47] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

1, 3, 4

[48] B. Taylor, V. Karasev, and S. Soatto. Causal video object seg-

mentation from persistence of occlusions. In CVPR, 2015. 5

[49] Y.-H. Tsai, M.-H. Yang, and M. J. Black. Video segmenta-

tion via object flow. In CVPR, 2016. 2, 5, 7

[50] S. Vijayanarasimhan and K. Grauman. Active frame selec-

tion for label propagation in videos. In ECCV, 2012. 5

[51] S. Xie and Z. Tu. Holistically-nested edge detection. In

ICCV, 2015. 1, 2, 3, 4

[52] J. Yang, B. Price, S. Cohen, H. Lee, and M.-H. Yang. Object

contour detection with a fully convolutional encoder-decoder

network. In CVPR, 2016. 2, 3, 4

