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Convolutional Oriented Boundaries:
From Image Segmentation to High-Level Tasks

Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Pablo Arbeldez, and Luc Van Gool

Abstract—We present Convolutional Oriented Boundaries (COB), which produces multiscale oriented contours and region hierarchies
starting from generic image classification Convolutional Neural Networks (CNNs). COB is computationally efficient, because it requires
a single CNN forward pass for multi-scale contour detection and it uses a novel sparse boundary representation for hierarchical
segmentation; it gives a significant leap in performance over the state-of-the-art, and it generalizes very well to unseen categories and
datasets. Particularly, we show that learning to estimate not only contour strength but also orientation provides more accurate results.
We perform extensive experiments for low-level applications on BSDS, PASCAL Context, PASCAL Segmentation, and NYUD to
evaluate boundary detection performance, showing that COB provides state-of-the-art contours and region hierarchies in all datasets.
We also evaluate COB on high-level tasks when coupled with multiple pipelines for object proposals, semantic contours, semantic
segmentation, and object detection on MS-COCO, SBD, and PASCAL; showing that COB also improves the results for all tasks.

Index Terms—Contour detection, contour orientation, hierarchical image segmentation, object proposals, semantic contours

1 INTRODUCTION

HE adoption of Convolutional Neural Networks
T (CNNSs) has caused a profound change and a large leap
forward in performance throughout the majority of fields
in computer vision. In the case of a traditionally category-
agnostic field such as contour detection, it has recently
fostered the appearance of systems [1], [2], [3], [4], [5], [6]
that rely on large-scale category-specific information in the
form of deep architectures pre-trained on Imagenet [7] for
image classification [8], [9], [10], [11].

This paper proposes Convolutional Oriented Boundaries
(COB), a generic CNN architecture that allows end-to-end
learning of multiscale oriented contours, and we show how
it translates top performing base CNN networks into high-
quality contours; allowing to bring future improvements in
base CNN architectures into semantic grouping. We then
propose a sparse boundary representation for efficient con-
struction of hierarchical regions from the contour signal.
Our overall approach is both efficient (it runs in 0.8 seconds
per image) and highly accurate (it produces state-of-the-
art contours and regions on PASCAL and on the BSDS).
Figure 1 shows an overview of our system.

For the last fifteen years, the Berkeley Segmentation
Dataset and Benchmark (BSDS) [12] has been the experimen-
tal testbed of choice for the study of boundary detection and
image segmentation. However, the current large-capacity
and very accurate models have underlined the limitations
of the BSDS as the primary benchmark for grouping. Its 300
train images are inadequate for training systems with tens of
millions of parameters and, critically, current state-of-the-art
techniques are reaching human performance for boundary
detection on its 200 test images.

In terms of scale and difficulty, the next natural frontier
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for perceptual grouping is the PASCAL VOC dataset [13],
an influential benchmark for image classification, object de-
tection, and semantic segmentation which has a trainval set
with more than 10 000 challenging and varied images. A first
step in that direction was taken by Hariharan et al. [14], who
annotated the VOC dataset for category-specific boundary
detection on the foreground objects. More recently, the PAS-
CAL Context dataset [15] extended this annotation effort to
all the background categories, providing thus fully-parsed
images which are a direct VOC counterpart to the human
ground truth of the BSDS. In this direction, this paper inves-
tigates the transition from the BSDS to PASCAL Context in
the evaluation of image segmentation.

We derive valuable insights from studying perceptual
grouping in a larger and more challenging empirical frame-
work. Among them, we observe that COB leverages in-
creasingly deeper state-of-the-art architectures, such as the
recent Residual Networks [11], to produce improved results.
This indicates that our approach is generic and can directly
benefit from future advances in CNNs. We also observe that,
in PASCAL, the globalization strategy of contour strength
by spectral graph partitioning proposed in [16] and used in
state-of-the-art methods [1], [17] is unnecessary in the pres-
ence of the high-level knowledge conveyed by pre-trained
CNNs and oriented contours, thus removing a significant
computational bottleneck for high-quality contours.

We conduct two types of experiments, the first of which
regards low-level vision applications, such as contour detec-
tion and generic segmentation on PASCAL Context and the
BSDS500. We extend the evaluation to the NYUD RGB-D
dataset, showing that the pipeline of COB can benefit from
depth embeddings. We also include evaluation of object
contour detection on the PASCAL VOC’12 database. In all
cases, COB demonstrates state-of-the-art performance on
contours and regions while being computationally efficient.

In a second set of experiments, we study the interplay of
COB with various downstream recognition applications. We
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Fig. 1. Overview of COB: From a single pass of a base CNN, we obtain multiscale oriented contours. We combine them to build Ultrametric Contour
Maps (UCMs) at different scales and fuse them into a single hierarchical segmentation structure.

use our hierarchical regions as input to the combinatorial
grouping algorithm of [17] and obtain state-of-the-art seg-
mented object proposals on PASCAL VOC’12 Segmentation
by a significant margin. Furthermore, we provide empirical
evidence for the generalization power of COB by evaluating
our object proposals without any retraining in the even
larger and more challenging MS-COCO [18] dataset, where
we also report competitive results compared to the state
of the art. We have also studied the effects of COB when
coupled with well-known pipelines, showing that injecting
COB detections to them lead to improvements on Semantic
Segmentation and Object Detection. Finally, we report a new
state of the art on Semantic Boundary detection.

Our approach to segmentation has also found applica-
tion in retinal image segmentation [19], obtaining state-of-
the-art and super-human performance in vessel and optic
disc segmentation, which further highlights its generality.

The COB code, pre-computed results, pre-trained mod-
els, and benchmarks are publicly available at www.vision.
ee.ethz.ch/~cvlsegmentation/.

2 RELATED WORK

Contour Detection: Early approaches to contour detection
relied on local gradient measurements in an image [20], [21],
[22]. These simple edge detectors operate by applying local
derivative filters on grayscale images. Gradient filtering was
followed by detection of zero crossings [23], or by non-
maximum suppression [24].

Such simple gradient techniques are unable to handle
information captured by richer features such as color and
texture [25], or Statistical Edges [26]. Martin et al. [25] define
rich gradient operators out of color, brightness and texture,
and use them as input to a logistic regression classifier. Their
approach is extended by Arbeldez et al. [16], to combine
contours at multiple scales.

Machine Learning techniques contributed to learnable
features and classifiers that boosted contour detection per-
formance, especially after the manual annotation of the
BSDS database [16], [25]. The BEL algorithm [27] attempts
to learn an edge classifier in the form of a probabilistic
boosting tree. Kokkinos [28] trains an orientation-sensitive
boundary detector using Multiple-Instance Learning. Ren

and Bo [29] use patch representations automatically learned
through sparse coding. Sketch Tokens [30] and Structured
Edges [31] tackle both accuracy and speed, by using random
forests to classify patches.

The latest wave of contour detectors takes advantage
of deep learning to obtain state-of-the-art results [1], [2],
[3], [4], [5], [6], [32]. Ganin and Lempitsky [6] use a deep
architecture to extract features of image patches. They ap-
proach contour detection as a multi-class classification task,
by matching the extracted features to predefined ground-
truth features. The authors of [3], [4] make use of features
generated by pre-trained CNNs to regress contours. They
prove that object-level information provides powerful cues
for the prediction of contours. Shen et al. [5] learn deep
features using shape information. Xie and Tu [2] provide
an end-to-end deep framework to boost the efficiency and
accuracy of contour detection, using convolutional feature
maps and a novel loss function. An extended version of
their work, with many additional experiments can be found
in [33]. Kokkinos [1] builds upon [2] and improves the
results by tuning the loss function, running the detector at
multiple scales, and adding globalization.

What many of the aforementioned methods have in
common is that several simple components contribute to
increased performance: (i) information at multiple scales [1],
[16], [17], [34], (ii) contour orientation [16], [28], [30], [35],
and (iii) end-to-end deep learning [1], [2]. COB is able
to combine all of the above in a single pass of a CNN,
producing an output that is richer than a linear combination
of cues at different scales.

At the core of all these deep learning approaches lies a
base CNN, starting from the seminal AlexNet [8] (8 layers),
through the more complex VGGNet [10] (16 layers) and
inception architecture of GoogLeNet [9] (22 layers), to the
very recent and very deep ResNets [11] (up to 1001 lay-
ers). Image classification results, which originally motivated
these architectures, have been continuously improved by
exploring deeper and more complex networks. In this work,
we present results both using VGGNet and ResNet, showing
that COB is modular and can incorporate and benefit from
future improvements in the base CNN.

Recent work has also explored weakly supervised or
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Fig. 2. Our deep learning architecture (best viewed in color). The connections show the different stages that are used to generate the multiscale
contours. Orientations further require additional convolutional layers in multiple stages of the network.

unsupervised deep learning of contours: Khoreva et al. [36]
learn from the results of generic contour detectors coupled
with object detectors; and Li et al. [37] train contour de-
tectors from motion boundaries acquired from video se-
quences. Yang et al. [38] use Conditional Random Fields
(CRFs) to refine the inaccurately localized boundary an-
notations of PASCAL. Some works shift the domain of
contours detection from abstract perceptual grouping to
better defined tasks such as semantic or object contour
detection [14], [36], [38]. Some methods also combine RGB-D
cues for contour detection [31], [39], [40]. Extensive experi-
ments on such benchmarks show that COB has an excellent
performance even when shifting domains, showing state-of-
the-art performance also in these new situations.

Hierarchical Image Segmentation and Grouping: One of
the most studied category of methods for image segmen-
tation are spectral methods, that rely on the generalized
eigenvalue problem to solve a low-level pixel grouping
problem. Notable approaches that fall into this category are
Normalized Cuts [41], PMI [42], gPb [16], MCG [17]. Ar-
beldez et al. [16] showed the usefulness for jointly optimiz-
ing contours and regions (The duality between contours and
regions was first studied by Najman and Schmitt [43]). Pont-
Tuset et al. [17] leveraged multi-resolution contour detection
and proved its interest for generating object proposals. COB
also exploits the duality between contour detection and
segmentation hierarchies. We differentiate from previous
approaches mainly in two aspects. First, our sparse bound-
ary representation translates into a clean and highly efficient
implementation of hierarchical segmentation. Second, by
leveraging high-level knowledge from the CNNs in the
estimation of contour strength and orientation, our method
benefits naturally from global information, which allows by-
passing the globalization step (output of normalized cuts), a
bottleneck in terms of computational cost, but a cornerstone
of previous approaches.

3 DEEP MULTISCALE ORIENTED CONTOURS

CNNs are by construction multi-scale feature extractors. If
one examines the standard architecture of a CNN consisting
of convolutional and spatial pooling layers, it becomes clear
that as we move deeper, feature maps capture more global
information due to the decrease in resolution. For contour
detection, this architecture implies local and fine-scale con-
tours at shallow levels, coarser spatial resolution and larger

receptive fields for the units when going deeper and, con-
sequently, more global information for predicting bound-
ary strength and orientation. CNNs have therefore a built-
in globalization strategy for contour detection, analogous
to the hand-engineered globalization of contour strength
through spectral graph partitioning in [16], [17].

Figure 2 depicts how we make use of information
provided by the intermediate layers of a CNN to detect
contours and their orientations at multiple scales. Different
groups of feature maps contain different, scale-specific in-
formation, which we combine to build a multiscale oriented
contour detector. The remainder of this section is devoted
to introducing the recent approaches to contour detection
using deep learning, to presenting our CNN architecture
to produce contour detection at different scales, and to
explaining how we estimate the orientation of the edges;
all in a single CNN forward pass at the image level.

Training deep contour detectors: The recent success of [2]
is based on a CNN to accurately regress the contours of an
image. Within this framework, the idea of employing a CNN
in an image-to-image fashion without any post-processing
has proven successful, and lead to a big leap in performance
for the task of contour detection. Their network, HED,
produces scale-specific contour images (side outputs) for
different scales of a network, and combines their activations
linearly to produce a contour probability map. Using the
notation of the authors, we denote the training dataset by
S = {(Xn,Yn),n = 1,...,N}, with X, bein% the input
image and Y, = {y§”),j = 1. X L™ € {0,1}
the predicted pixelwise labels. For simplicity, we drop the
subscript n. Each of the M side outputs minimizes the
objective function:

ei::i)e (va(m)> =-8 Z log P (yj = 1|X;W7W(m))
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~(1=8) Y log P (3, =01X; Ww™) ()

JjeEY_

where ég;';)e is the loss function for scale m € {1,..., M},
W denotes the standard set of parameters of the CNN,
and {w(™ m = 1,...,M} the corresponding weights
of the the m-th side output. The multiplier 5 is used to
handle the imbalance of the substantially greater number
of background compared to contour pixels. Y, and Y_
denote the contour and background sets of the ground-truth
Y, respectively. The probability P (-) is obtained by apply-
ing a sigmoid o (-) to the activations of the side outputs



Fig. 3. lllustration of contour orientation learning. Row 1 shows the responses By, for 4 out of the 8 orientation bins. Row 2, from left to right: original
image, contour strength, learned orientation map into 8 orientations, and hierarchical boundaries.
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finally fused linearly, as: quse =0 (Z%:lhmfl(gil) where

h = {h,,,m =1,..., M} are the fusion weights. The fusion
output is also trained to resemble the ground-truth applying
the same loss function of Equation 1, by optimizing the com-
plete set of parameters, including the fusion weights hy,,. We
instead take advantage of the common CNN architectures
to regress both the strength of the coarse and detailed (fine)
contours, as well as the contour orientations. COB combines
these output channels non-linearly to a single hierarchical
segmentation. Inside this segmentation, the placement of
each region in the hierarchy is determined by the strength of
the boundaries to the neighbouring regions. All in all, COB
efficiently combines contour strengths and orientations into
a segmentation hierarchy which can further facilitate high-
level vision tasks related to segmented object proposals.
In the rest of the paper we use the class-balancing cross-
entropy loss function of Equation 1.

Multiscale contours: We start from a deep network pre-
trained on ImageNet [7], such as VGG [10] or ResNet [11].
The fully connected layers used for classification are re-
moved, and so are the batch normalization layers, since we
operate on one image per iteration. Therefore, the network
consists mainly of convolutional layers coupled with ReLU
activations, divided into 5 stages. We will refer to this
architecture as the base CNN of our implementation. Each
stage is handled as a different scale, since it contains feature
maps of a similar size. At the end of a stage, there is a max
pooling layer, which reduces the spatial dimensions of the
produced feature maps to a half. As discussed before, the
CNN naturally contains multiscale information, which we
exploit to build a multiscale contour regressor.

We separately supervise the output of the last layer of
each stage (side activation), comparing it to the ground
truth using the loss function of Equation 1. This way, we
enforce each side activation to produce an intermediate
contour map at different resolution. The idea of supervising
intermediate parts of a CNN has successfully been used in
previous approaches, for a variety of tasks [2], [9], [44]. In
the 5-scale base CNN illustrated in Figure 2, we linearly
combine the side activations of the 4 finest and 4 coarsest
scales to a fine-scale and a coarse-scale output (Y}, and
ffwarse, respectively) with trainable weights. The finer scale
contains better localized contours, whereas the coarse scale

leads to less noisy detections. To train the two sets of
weights of the linear combinations, we freeze the pre-trained
weights of the base CNN.

Estimation of Contour Orientations: In order to predict
accurate contour orientations, we propose an extension of
the CNN that we use to predict contour strength. We define
the task as pixel-wise image-to-image multiscale classifica-
tion into K bins. We connect K different branches (sub-
networks) to the base network, each of which is associated
with one orientation bin, and has access to feature maps that
are generated from the intermediate convolutional layers
at M different scales. We assign the parts of the CNN
associated with each orientation a different task from the
base network: classify the pixels of the contours that match
a specific orientation. In order to design these orientation-
specific subtasks, we classify each pixel of the human con-
tour annotations into K different orientations. The orienta-
tion of each contour pixel is obtained by approximating the
ground-truth boundaries with polygons, and assigning each
pixel the orientation of the closest polygonal segment, as
shown in Figure 5. As in the case of multiscale contours, the
weights of the base network remain frozen when training
these sub-networks.

Each sub-network consists of M convolutional layers,
each of them appended on different scales of the base
network. Thus we need M * K additional layers. In our
setup, we use K = 8 and M = 5. All K orientations are
regressed in parallel, and since they are associated with a
certain angle, we post-process them to obtain the orientation
map. Specifically, the orientation map is obtained as:

O(z,y) =T (argmkaXBk (x,y)> k=1,.... K (2

where By (z,y) denotes the response of the k-th orienta-
tion bin of the CNN at the pixels with coordinates (x,y)
and 7T (-) is the transformation function which associates
each bin with its central angle. For the cases where two
neighboring bins lead to strong responses, we compute the
angle as their weighted average. At pixels where there is
no response for any of the orientations, we assign random
values between 0 and 7, not to bias the orientations. The
different orientations as well as the resulting orientation
map (color-coded) are illustrated in Figure 3.

In [16], [17], [31] the orientations are computed by means
of local gradient filters. In Section 5 we show that our



learned orientations are significantly more accurate and lead
to better region segmentations.

4 FAST HIERARCHICAL REGIONS

This section is devoted to building an efficient hierar-
chical image segmentation algorithm from the multiscale
contours and the orientations extracted in the previous
section. We build on the concept of Ultrametric Contour
Map (UCM) [16], which transforms a contour detection
probability map into a hierarchical boundary map, which
gets partitions at different granularities when thresholding
at various contour strength values. Despite the success of
UCMs, their low speed limits their applicability. We address
this issue by using an alternative representation of an image
partition which reduces the computation time of UCMs by
an order of magnitude.

Sparse Boundary Representation of Hierarchies of Re-
gions: An image partition is a clustering of the set of
pixels into different sets, which we call regions. The most
straightforward way of representing it in a computer is by a
matrix of labels, as in the example in Figure 4(a), with three
regions on an image of size 2x3. The boundaries of this
partition are the edge elements, or edgels, between the pixels
with different labels (highlighted in red). We can assign
different strengths to these boundaries (thicknesses of the red
lines), which indicate the confidence of that piece of being a
boundary. By iteratively erasing these boundaries in order of
increasing strength we obtain different partitions, which we
call hierarchy of regions, or Ultrametric Contour Maps.

These boundaries are usually stored in the boundary grid
(Figure 4(b)), a matrix of double the size of the image (minus
one), in which the odd coordinates represent pixels (gray
areas), and the positions in between represent boundaries
(red numbers) and junctions (crossed positions). UCMs use
this representation to store their boundary strength values,
that is, each boundary position stores the threshold value
beyond which that edgel disappears and the two neighboring
regions merge. This way, simply binarizing a UCM we have
a partition represented as a boundary grid. Continuing with
the example in Figure 4, binarizing the UCM at 0.5 the edge
between region 2 and 3 would disappear, that is, 2 and 3
would merge and create a new region.

This representation becomes very inefficient at run time,
where the percentage of activated boundaries is very sparse.
Not only are we wasting memory by storing those empty
boundaries, but it also makes operating on them very inef-
ficient by having to sweep over the entire matrix to perform
a modification on a single boundary piece.
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Fig. 4. Image Partition Representation:
(a) Pixel labeling, each pixel gets assigned a region label. (b) Boundary

grid, markers of the boundary positions. (c) Sparse boundaries, lists of
boundary coordinates between neighboring regions.
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Inspired by how sparse matrices are handled, we de-
signed the sparse boundaries representation (Figure 4(c)). It
stores a look-up table for pairs of neigboring regions, their
boundary strength, and the list of coordinates the bound-
ary occupies. Apart from being more compact in terms
of memory, this representation enables efficient operations
on specific pieces of a boundary, since one only needs to
perform a search in the look-up table and scan the activated
coordinates; instead of sweeping the whole boundary grid.

Fast Hierarchies from Multiscale Oriented Contours: We
are inspired by the framework proposed in [17], in which
a UCM is obtained from contours computed at different
image scales and then combined into a single hierarchy. The
motivation behind this work is that the UCMs obtained from
downscaled images will focus on the coarse structures and
ignore textures, so their localization accuracy will decrease.
On the other hand, upscaled images will bring very good
localization in the boundaries, but it will be harder to distin-
guish between the high- and low-level contents. To bring the
best of the two worlds, [17] progressively projects the coarse
hierarchies into the finer ones by adapting the high-level
contours into the better localized ones. The final hierarchy
keeps the high-level information while being snapped to the
correctly localized low-level boundaries.

The deep CNN presented in Section 3 provides different
levels of detail for the image contours, so instead of process-
ing the image at multiple resolutions we use the different
outputs that are computed in a single pass of the CNN to
obtain different hierarchies that focus on high- and low-level
features.

A drawback of the original framework [17], however, is
that the manipulation of the hierarchies and their projection
to different scales is very slow (in the order of seconds), so
the operations on the UCMs had to be performed at a small
subset of the contour strengths (from thousands to a few
dozens). By using the fast sparse boundary representation,
we can operate on all thousands of contour strengths, yield-
ing better results at a fraction of the original cost. Moreover,
we use the learned contour orientations for the computation
of the Oriented Watershed Transform (OWT) [16], further
boosting performance.

5 EXPERIMENTS ON Low-LEVEL APPLICATIONS

This section presents the empirical evidence that supports
our approach for low-level applications (image segmen-
tation and contour detection). First, Section 5.1 explores
ablated and baseline techniques in order to isolate and
quantify the improvements due to different components of
our system. Section 5.2 further analyzes and evaluates the
proposed contour orientations. In Section 5.3, Section 5.4,
and Section 5.5 we compare our results against the state
of the art in generic RGB image segmentation, RGB ob-
ject boundary detection, and RGB-D image segmentation,
respectively. In all three cases, we obtain the best results to
date by a significant margin. Finally, Section 5.6 analyzes the
effect of the various components in terms of speed on COB.

In terms of datasets, we extend the main BSDS bench-
mark [25] to the PASCAL Context dataset [15], which con-
tains carefully localized pixel-wise semantic annotations for



the entire image on the PASCAL VOC 2010 detection train-
val set. This results in 459 semantic categories across 10 103
images, which is an order of magnitude (20x) larger than
the BSDS. In order to allow training and optimization of
large capacity models, we split the data into train, valida-
tion, and test sets as follows: VOC train corresponds to the
official PASCAL Context train with 4998 images, VOC val
corresponds to half the official PASCAL Context validation
set with 2607 images and VOC test corresponds to the
second half with 2498 images. In the remainder of the paper,
we refer to this dataset division. Note that, in contrast to
the BSDS, in this setting boundaries are defined between
different semantic categories and not between their parts.

In all our experiments for boundary detection and image
segmentation, we used the standard evaluation benchmark
evaluating boundaries (F, [25]) and regions (F,, [45]).
Through the literature, the tolerance in the boundary lo-
calization metric Fj is altered (the maxDist parameter), de-
pending on the database and the quality of the annotations.
To avoid confusion, we list the value of this parameter for
all our experiments in Table 1. Please also note that methods
that produce open contours instead of regions can not be
evaluated using the region measure F,,,. In all the produced
curves, markers indicate the optimal operating point that
maximizes F}, and Fj,. We used the publicly available
Caffe [46] framework for training and testing CNNs, and all
the state-of-the-art results are computed using the publicly-
available code provided by the respective authors.

Training details: In our two-step training approach,

we first train the base networks for the task of contour de-
tection (coarse and fine). We use stochastic gradient descent
with a momentum of 0.9 and weight decay of 0.0002 for
40k iterations. The base learning rate is set to 1075, and
is divided by 10 after 30k iterations. After the first step
is finished, the weights of the base network are frozen,
and the layers of the orientation sub-network are connected
and trained for an additional 10k iterations. Depending
to the size of dataset we use different data augmentation
strategies: flipping and rotation into 4 angles for PASCAL
and NYUD-v2; flipping, rotation into 16 angles, and scaling
into 3 scales [2] for BSDS500. In all cases, we initialize
the network from ImageNet pre-trained weights. The same
ground-truth boundaries are used for training both the fine
and the coarse contours.

Database | Task train  test maxDist
BSDS500 Generic Segmentation 300 200 0.0075
VOC Context | Generic Segmentation 7605 2498 0.0075
VOC’12 Segm. | Object Contours 1464 1449 0.01
NYUD-v2 RGB-D Segmentation 795 654 0.011
SBD Semantic Contours 8498 2857 0.02
VOC’12 Segm. | Semantic Segmentation 1464 1449 -
COCO Object Proposals - 40504 -
vOoC07 Object Detection 5011 4952 -

TABLE 1
Datasets and Parameters: The list of databases used to evaluate our
approach on various low-level and high-level tasks. We report the
number of images used for training and testing our algorithm, along
with the tolerance for contour localization used in the literature, when
applicable. In all our experiments, we keep those numbers unchanged.

5.1 Control Experiments/Ablation Analysis

This section presents the control experiments and ablation
analysis to assess the performance of all subsystems of our
method. We train on VOC train, and evaluate on VOC val
set. We report the standard F measure at Optimal Dataset
Scale (ODS) and Optimal Image Scale (OIS), as well as
the Average Precision (AP), both evaluating boundaries
(Fp [25]) and regions (F,, [45]).

Table 2 shows the evaluation results of the different
variants, highlighting whether we include globalization
and/or trained orientations. As a first baseline, we test the
performance of MCG [17], which uses Structured Edges [31]
as input contour signal. We then substitute SE by the newer
HED [2], trained on VOC train as input contours and de-
note it MCG-HED. Note that the aforementioned baselines
require multiple passes of the contour detector (3 scales).

In the direction of using the side outputs of the base
CNN architecture as multiscale contour detections in one
pass, we tested the baseline of naively taking the 5 side
outputs directly as the contour detections. We trained both
VGGNet [10] and ResNet50 [11] on VOC train and combined
the 5 side outputs with our fast hierarchical regions of
Section 4 (VGGNet-Side and ResNet50-Side).

We finally evaluate different variants of our system,
as presented in Section 3. We first compare our system
with two different base architectures: Ours(VGGNet) and
Ours(ResNet50). We observe that the deeper architecture of
ResNet translates into better boundaries and regions. Using
the even deeper counterparts of ResNet lead to negligible
gain in accuracy while significantly sacrificing speed.

We then evaluate the influence of our trained orienta-
tions and globalization, by testing the four possible combi-
nations (the orientations are further evaluated in the next
section). Our method using ResNet50 together with trained
orientations leads to the best results both for boundaries
and for regions. The experiments also show that, when
coupled with trained orientations, globalization even de-
creases performance, so we can safely remove it and get a
significant speed up. This behaviour arises from the fact that
the image-to-image architecture of the base CNN already
captures global information, addressing issues that could
not be handled by local approaches, e.g., deleting internal
contours of objects. Our technique with trained orientations
and without globalization is therefore selected as our final
system and will be referred to in the sequel as Convolutional
Oriented Boundaries (COB).

5.2 Contour Orientation

We evaluate contour orientation results by the classification
accuracy into 8 different orientations, to isolate their per-
formance from the global system. We compute the ground-
truth orientations as depicted in Figure 5 by means of
the sparse boundaries representation. We then sweep all
ground-truth boundary pixels and compare the estimated
orientation with the ground-truth one. Since the orientations
are not well-balanced classes (much more horizontal and
vertical contours), we compute the classification accuracy
per each of the 8 classes and then compute the mean.
Figure 6 shows the classification accuracy with respect to
the confidence of the estimation. We compare our proposed



Fig. 5. Polygon simplification: From all boundary points (left) to sim-
plified polygons (right), which are used to compute the ground-truth
orientation robustly.

technique against the local gradient estimation used in
previous literature [16], [17], [31]. As a baseline, we plot
the result a random guess of the orientations would get. We
observe that our estimation is significantly better than the
previous approach. As a summary measure, we compute
the area under the curve of the accuracy (ours 58.6%, local
gradients 41.2%, random 12.5%), which corroborates the
superior results from our technique.
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Fig. 6. Contour orientation: Classification accuracy into 8 bins.

5.3 Generic Image Segmentation

We present our results for contour detection and generic
image segmentation on PASCAL Context [15] as well as on
the BSDS500 [12], which is the most established benchmark
for perceptual grouping.

PASCAL Context: We train COB in the VOC train,
and perform hyper-parameter selection on VOC val. We
report the final results on the unseen VOC test when
trained on VOC trainval, using the previously tuned hyper-
parameters. We compare our approach to several methods
trained on the BSDS [2], [17], [31], [47] and we also re-
train the current state-of-the-art contour detection methods

Boundaries - F}, Regions - F,p

Method Global. Orient. ODS OIS AP ODS OIS AP

MCG [17] v X 0.548 0.594 0.519 0.355 0.419 0.263
MCG-HED v X 0.691 0.727 0.693 0.459 0.520 0.374
VGGNet-Side v X 0.644 0.683 0.664 0.439 0.505 0.351
ResNet50-Side v X 0.676 0.711 0.681 0456 0.521 0.374
Ours (VGGNet) X v 0.705 0.735 0.741 0.466 0.533 0.384
Ours (ResNet50) X X 0.734 0.767 0.757 0.475 0.545 0.405
Ours (ResNet50) v X 0.726 0.759 0.725 0.461 0.531 0.395
Ours (ResNet50) v v 0.732 0.763 0.731 0.481 0.554 0.418
Ours (ResNet50) X v 0.737 0.768 0.758 0.483 0.553 0.417

TABLE 2

Ablation analysis on VOC val: Comparison of different ablated and
baseline versions of our system.
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HED [2] and the recent CEDN [38] on VOC trainval using
the code provided by the respective authors.

Figure 7 presents the evaluation results of COB com-
pared to the state of the art, showing that it outperforms all
others by a considerable margin both in terms of boundaries
and in terms of regions. The lower performance of the
methods trained on the BSDS quantifies the difficulty of the
task when moving to a larger and more challenging dataset.

BSDS500: We retrain COB using only the 300 trainval
images of the BSDS, after data augmentation as suggested
in [2], keeping the architecture decided in Section 5.1. For
comparison to HED [2], we used the model that the authors
provide online. We also compare with CEDN [38], by eval-
uating the results provided by the authors.

Figure 8 presents the evaluation results, which show that
we also obtain state-of-the-art results in this dataset. The
smaller margins are in all likelihood due to the fact that
we almost reach human performance for the task of contour
detection on the BSDS, which motivates the shift to PASCAL
Context to achieve further progress in the field.

Qualitative Results: Figure 9 shows some qualitative
results of our hierarchical contours. Please note that COB
is capable of correctly distinguishing between internal con-
tours and external, semantically meaningful boundaries.

5.4 Object boundary detection

Concurrent works with the conference version of our pa-
per [51] presented results on object boundary detection [36],
[38] on the PASCAL VOC’12 Segmentation database. The
database consists of 1464 training and 1449 validation im-
ages, including pixel-wise annotations of the instances and
the semantic classes of the objects. The goal is to detect
the boundaries of the objects that belong to the 20 classes
of PASCAL, without distinguishing the semantics. Different
from generic image segmentation, boundaries that do not
belong to an object are treated as background.

We retrain COB on VOC’12 train set and report the
results on the validation set. We use the instance level
annotation of the database, and extract contours from the
semantic segmentation annotations of the database. The
uncertain areas (annotated with value of 255) are treated
as background. We compare to several baselines, together
with recent state-of-the-art results. Specifically, Khoreva et
al. [36] retrained HED [2] on object contours, and Yang et
al. [38] proposed a novel encoder-decoder architecture to
tackle the same task. We evaluate the best pre-computed
results provided by the authors in both cases. The results are
quantified in Figure 11. We observe that COB obtains state-
of-the-art results in all metrics. CEDN [38] performs better
in the high precision regime. However, the authors used
extra images from the SBD dataset [14] for training their
detector. Also, CEDN is trained on an improved version of
the ground truth, aligning the uncertain areas of VOC'12
with the the true image boundaries by using a CRE. We
report results of COB trained only on VOC’12 train set, to
be consistent with the results of Khoreva et al. [36]. In this
experiment, we use maxDist of 0.01, as is adopted by the
literature [36], [52].

Figure 10 illustrates some qualitative results, as well as
the differences of generic segmentation and object boundary
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Fig. 8. BSDS500 Test Evaluation: Precision-recall curves for evaluation of boundaries (F} [25]), and regions (Fo, [45]).

detection. We show our results on images of the VOC'12
val set using the model trained on PASCAL Context for
generic image segmentation, and we compare qualitatively
to the model retrained on the 20 classes of VOC’12 for object
boundary detection. In the latter case, the detections are
focused on the 20 object classes, disregarding strong contour
cues of the background that are detected by the generic
segmentation model.

5.5 RGB-D boundary detection on NYUD-v2 dataset

The NYUD (v2) dataset [53] consists of 1449 RGB-D indoor
images, divided into splits of 795 training and 654 testing
images, with the corresponding semantic and instance level
segmentations. Gupta et al. [39] adopted this dataset for
contour detection. In their experiments, they obtained the
respective boundary annotations from the instance-level
segmentations of the dataset. We evaluated the performance
by using the standard benchmarks of BSDS. Following [2],
[31], [40], we increased the tolerance for incorrect localiza-
tions from 0.0075 of the image diagonal to 0.11, to compen-
sate for inaccurate annotations of boundaries.

We use the extra information of depth to train different
variants of COB on the NYUD dataset. Gupta et al. [40] used
the camera parameters of the images to encode the depth
information in three channels: horizontal disparity, height
above ground, and the angle of the local surface normal
with the inferred gravity direction at each pixel (HHA).
We retrain three different variants of the CNN: (a) Only
using RGB data (ResNet50-RGB), (b) Incorporating depth
information into a fourth channel (ResNet50-RGBD), and
(c) Concatenating RGB and HHA channels and operate on
6 channels directly (ResNet50-RGB-HHA). Figure 13 illus-
trates an overview of the data, along with depth and HHA
features that we used, as well as the results obtained by
COB. In Figure 12 we show the ablation analysis by directly
evaluating the CNN output, without any post-processing.
We observe that the CNNs retrained on RGB and RGB-
HHA channels obtain significantly better results than the
one trained on RGB-D data, showing that HHA features
provide an appropriate encoding for depth information.
We retrain the full pipeline of COB (including orientations)
on NYUD and we report the precision-recall curves. We



Fig. 9. Qualitative results on PASCAL - Hierarchical Regions. Row
1: original images, Row 2: ground-truth boundaries, Row 3: hierarchical
regions with COB.

compare with various state-of-the-art methods, showing
significant improvements. Specifically, we compare with the
SE [31] detector retrained on the RGB-D data of NYUD,
the detector proposed by [40] trained on RGB and depth
normal gradients, and the best result reported on NYUD by
HED [2], where the authors trained two different variants
of the detector on RGB and HHA modalities respectively
and averaged the obtained results. For completeness, we
report results obtained by the original MCG [17] without
any retraining on NYUD. The best result is obtained by the
variant of COB trained on both RGB and HHA modalities.
Compared to its RGB-only counterpart, the particular model

Fig. 10. Qualitative results for Object Boundaries. Row 1: original
images, Row 2: Generic Image Segmentation results, Row 3: Object
Boundary results.
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achieves higher accuracy, suggesting that the depth embed-
dings are useful cues to discern contours when RGB modal-
ity alone is unable to do so. It is noteworthy that the post-
processing step (orientations and UCMs) further boosts the
performance of COB. For example, performance increases
from 0.745 (ResNet50-RGB-HHA) to 0.784 (COB-RGB-HHA)
by plugging in the orientations and the UCM pipeline to
the trained ResNet50 architecture. We also report the results
of the model trained on PASCAL Context (COB-PC) and
operating only on RGB data, showing that it performs fairly
well without any retraining on the NYUD dataset.

5.6 Efficiency Analysis

Contour detection and image segmentation, as a prepro-
cessing step towards high-level applications, need to be
computationally efficient. The previous state-of-the-art in
hierarchical image segmentation [16], [17] was of limited
use in practice due to its computational load.

As a core in our system, the forward pass of our network
to compute the contour strength and 8 orientations takes
0.28 seconds on a NVidia Titan X GPU. Table 3 shows the
timing comparison between the full system COB (Ours) and
some related baselines on PASCAL Context. We divide the
timing into different relevant parts, namely, the contour
detection step, the Oriented Watershed Transform (OWT)
and Ultrametric Contour Map (UCM) computation, and the
globalization (normalized cuts) step.

Steps (1) MCG [17] (2) MCG-HED (3) Fast UCMs (4) COB (Ours)

Contours 3.08 0.39* 0.39* 0.28*

OWT, UCM 11.33 11.58 1.63 0.51

Globalize 9.96 9.97 9.92 0.00

Total Time 24.37 21.94 11.94 0.79
TABLE 3

Timing experiments: Comparing our approach to different baselines.
Times computed using a GPU are marked with an asterisk.

Column (1) shows the timing for the original MCG [17],
which uses Structured Edges (SE) [31]. As a first baseline,
Column (2) displays the timing of MCG if we naively
substitute SE by HED [2] at the three scales (running on a
GPU). By applying the sparse boundaries representation we
reduce the UCM and OWT time from 11.58 to 1.63 seconds
(Column (3)). Our final technique COB, in which we remove
the globalization step, computes the three scales in one pass
and add contour orientations, takes 0.79 seconds in mean.
Overall, comparing to previous state-of-the-art, we get a
significant improvement at a fraction of the computation
time (24.37 to 0.79 seconds).

6 EXPERIMENTS ON HIGH-LEVEL APPLICATIONS

This section is dedicated to present the interaction of COB
boundaries and segments with higher vision tasks. In Sec-
tion 6.1 we evaluate COB as object proposals by plugging in
the detected UCMs into the combinatorial goruping pipeline
of MCG [17]. In Section 6.2 we study the interplay of our
boundary detector with semantic contours and semantic
segmentation by combining COB with Dilated Network [68]
and PSPNet [69], and in Section 6.3 we couple the COB
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Fig. 12. NYUD-v2 test: Precision-recall curves for evaluation of boundaries (F;, [25]), and regions (F;, [45]). ODS, OIS, and AP summary measures.

Fig. 13. Data and results on NYUD-v2. From left to right: RGB image, depth, HHA features [40], ground truth, and COB detections
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Fig. 15. Bounding-box object proposals evaluation on PASCAL Segmentation val and MS-COCO val: Note that COB is designed to detect

segmented object proposals and not bounding-box proposals.

proposals with the Fast-RCNN [70] pipeline for object detec-
tion. In all cases, we show that COB co-operates well with
existing approaches by improving their performance.

6.1 Object Proposals

Object proposals are an integral part of current object de-
tection and semantic segmentation pipelines [63], [70], [71],
as they provide a reduced search space on locations, scales,
and shapes over the image. This section evaluates COB as
a segmented and bounding box proposal technique, when
using our high-quality region hierarchies in conjunction
with the combinatorial grouping framework of MCG [17].
In terms of segmented object proposals, we compare against
the most recent techniques SharpMask [54], DeepMask [55],
POISE [56], MCG and SCG [17], LPO [57], GOP [59],
SeSe [60], GLS [61], and RIGOR [62]. In terms of bounding
box proposals, we compare also against SharpMask [54],
DeepMask [55], EB [64], RPN [63] MCG and SCG [17],
LPO [57], BING [65], SeSe [60], GLS [61], RIGOR [62],
Obj [66], and RP [67]. Recent thorough comparisons of object
proposal generation methods can be found in [72], [73].

We perform experiments on the PASCAL 2012 Segmen-
tation dataset [13] and on the bigger and more challenging
MS-COCO [18] (val2014 set). The hierarchies and combina-
torial grouping are trained on PASCAL Context. To assess
the generalization capability, we evaluate on MS-COCO,
which contains a large number of previously unseen cate-
gories, without further retraining.

Figure 14 shows the average recall [73] with respect
to the number of object proposals. In PASCAL VOC'12
Segmentation, the absolute gap of improvement of COB
is at least of +13% with the second-best technique, and
consistent in all the range of number of proposals. In MS-
COCO, even though we did not train on any MS-COCO
image, COB reaches competitive results for the task, with
only very recent techniques [54], [55] reaching higher Av-
erage Recall when evaluating a low number of proposals.
This shows that our contours, regions, and proposals are
properly learning a generic concept of object rather than
some specific categories.

Figure 15 shows the evaluation in terms of bounding
box object proposals. COB is less competitive in terms of
box proposals, however the algorithm was not specifically
designed for detecting bounding boxes. We also show the
comparison to RPN [63], which is trained on VOC’07, and
thus does not generalize well in the classes of COCO.

6.2 Semantic Boundaries and Semantic Segmentation

The task of Semantic Boundaries, introduced by [14], re-
quires not only detecting the boundaries, but also associ-
ating a semantic class to them. It can be thought as a combi-
nation of Boundary Detection and Semantic Segmentation,
where except for the binary information of boundaries,
one needs to label each of the detected pixels with the
corresponding semantic class. The common approach to
this task is to separately approach semantic segmentation
and contour detection, and fuse the results of the two
tasks [4], [14], [32]. Hariharan et al [14] tackled the task with
generic object detectors and bottom up contours. Bertasius
et al. [4], [32] show that results can be significantly improved
when using deep-learning based semantic segmenters and
contour detectors. Kokkinos [74] approaches the task with
fully-convolutional networks trained end to end, although
the results do not reach the current state of the art.

We also follow the most common approach of mixing the
two tasks. We couple the COB boundaries with Semantic
Segmentation results by dilated convolutions [68]. Specifi-
cally, we mask the boundaries with Semantic Segmentation
results, with a tolerance of 0.02 of the image diagonal.

We report results on the SBD [14] database, for semantic
boundary detection, by using the standard benchmark. Ta-
bles 4 and 5 compare the results among various methods,
in both metrics used in the benchmark (mean maximal F-
measure and Average Precision) for all classes. The combi-
nation of COB with [68], denoted with COB-dil, achieves
state-of-the-art results in both metrics. For fair comparison,
we also include the results obtained by evaluating the
semantic segmentation results obtained by [68] directly as
contours. We show that COB fairly improves the result.

Having explored the performance of COB combined
with the Dilated Convolution network on Semantic Bound-
aries, it is interesting to investigate the dual task: the effects
of COB in semantic segmentation. We treat the COB UCMs
as superpixels, by applying a low value threshold (0.1) to
the hierarchy, which results in high recall. We then snap the
semantic segmentation results to the superpixels by majority
voting of the regions, i.e superpixels that overlap more than
50% with the semantic class, are assigned the correspond-
ing label. Table 6 reports the effects of such snapping on
Semantic Segmentation, on the validation split of PASCAL
VOC Segmentation dataset. In addition to the Dilated net-
work, we also explored the most recent PSPNet [69] as
the base semantic segmenter. Results improve consistently



Technique |Plane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse MBike Person Plant Sheep Sofa Train TV |Mean maxF
COB-dil 842 723 81.0 642 68.8 817 715 79.4 552 79.1 408 799 804 756 773 544 828 517 721 624 70.7
DilatedConv [68]| 83.7 71.8 78.8 655 66.3 82.6 73.0 77.3 473 76.8 372 784 794 752 738 462 795 46.6 764 63.8 69.0
BNF [32] 76.7 605 759 60.7 63.1 684 620 743 541 760 429 719 761 683 705 537 79.6 519 60.7 60.9 65.4
HFL [4] 736 611 742 570 587 702 60.8 71.8 463 721 36.0 709 729 675 699 441 731 422 622 60.4 62.2
[36] 65.9 541 63.6 479 470 604 509 56.5 404 56.0 30.0 57.5 580 574 595 39.0 642 354 51.0 424 51.9
[14] 415 467 156 17.1 365 427 403 226 188 270 125 182 354 294 481 138 269 110 22.0 313 27.9
TABLE 4

SBD val evaluation: Semantic contours results: maximal F}, per class and mean maximal Fy, is reported for all methods.

Technique|Plane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse MBike Person Plant Sheep Sofa Train TV |Mean AP

COB-dil 85.7 69.3 77.6 59.7 641 829 69.7 80.5 41.8 79.4 26.0 789 815 747 773 43.8 828 39.3 73.3 56.4 67.2

BNF [32] | 759 46.0 705 489 48.6 653 535 652 382 69.7 209 623 722 566 633 385 757 314 456 481 548

HFL [4] 713 549 688 456 483 709 565 65.6 29.0 658 17.6 643 683 640 656 288 665 258 59.5 49.8| 543

[36] 671 505 622 421 389 578 477 537 321 523 175 53.1 56.0 532 577 294 622 240 462 328 468

[14] 384 389 86 93 230 371 336 184 115 160 51 122 290 213 469 72 158 56 144 214| 207
TABLE 5

SBD val evaluation: Semantic contours results: Average Precision (AP) per class and mean AP (mAP) is reported for all methods.

Technique | BG Plane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse MBike Person Plant Sheep Sofa Train TV |Mean

COB-dil 93.5 90.3 39.7 832 66.2 689 92.6 84.6 89.2 36.9 84.7 53.1 829 87.0 831 863 547 84.8 45.7 84.6 68.9| 74.3

DilatedConv [68]| 92.8 87.1 392 79.6 659 663 90.0 825 853 362 81.7 51.7 781 83.8 802 834 505 826 431 838 653| 71.9

COB-PSP 954 909 448 902 76.1 841 96.1 921 953 456 954 599 92.0 93.2 908 901 68.0 934 50.2 93.3 79.8| 81.7

PSPNet [69] 953 90.7 444 902 748 834 963 920 950 46.4 946 59.1 919 925 910 899 660 91.6 502 93.0 80.0| 81.3
TABLE 6

PASCAL VOC Segmentation val evaluation: Effect of COB on Semantic Segmentation. Per-class loU and mean loU are reported.

Technique|Plane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse MBike Person Plant Sheep Sofa Train TV |Mean

69.5

COB
76.0

SeSe

76.8 69.7 53.3 44.6 80.5 81.3 83.1 453 742 69.4 80.1 84.2
76.8 653 54.6 380 765 782 8l1.6 40.1 741 665 789 81.8

72.8 359 67.1 684 751 654
66.2 329 656 677 734 66.8

68.7
66.8

76.7
74.5

TABLE 7
VOC 2007 test evaluation: Object Detection performance (mAP) of Fast-RCNN [70], using object proposals from [60] (original) or COB.

Fig. 16. Qualitative results for Semantic Segmentation. Row 1:
original images, Row 2: Dilated Convolution Network, Row 3: Dilated
Network with COB superpixels.

almost for all the classes in both cases, indicating that COB
superpixels are further refining the semantic segmentation
results on boundary locations. We observe a more moderate
improvement in the PSPNet results, mainly because of the
reduced false detections. We have excluded all images of
VOC Segmentation val set for training the COB model.

In Figure 16 we present some qualitative results. Snap-
ping to COB superpixels improves mainly on boundary
locations, as well as on noisy semantic segmentation detec-
tions in places where COB superpixels are not present.

6.3 COB Object Proposals for Object Detection

Object Proposals have been extensively used to facilitate
object detection [63], [70], [71]. Most common pipelines use
object proposals in the form of a bounding box to regress
a class score and a refined prediction of the bounding box
locations. Even though our approach provides segmented
object proposals from a hierarchy of regions, it is possible to
study their effect on common object detection pipelines by
simply extracting the bounding box around them.

We evaluate the bounding box proposals generated by
COB by feeding them into the Fast-RCNN [70] pipeline
for Object Detection. The original approach uses the VGG
network [10] together with the box proposals generated by
the Selective Search [60] algorithm to predict class prob-
ability and refine the localization for each of them. The
final detection performance is evaluated by performing non-
maximum suppression on the detections.

Experiments are performed on the VOC'07 detection
database. The database consists of 5011 training, and we
report the performance on its 4952 testing images. In our
experiments, we change the box proposals of Selective
Search, to the ones generated by COB. We keep all the
hyper-parameters of the original approach unchanged, both
at training and test times. Table 7 quantitatively evaluates
the effects of COB proposals in performance. We observe
improvements in object detection performance (mean Av-
erage Precision - mAP), which further proves the high
quality of the proposals generated by COB. We would like to
emphasize that the latest developments on Object Detection



use joint training of bounding box proposals and object class
scores [63], [75], [76], [77], which together with training
on external data achieves much higher results. Instead,
we focus on proving the high quality of COB proposals
compared to other object proposal techniques.

7 CONCLUSIONS

In this work, we have developed an approach to detect
contours at multiple scales, together with their orientations,
in a single forward pass of a convolutional neural network.
We provide a fast framework for generating region hierar-
chies by efficiently combining multiscale oriented contour
detections, thanks to a new sparse boundary representation.
We shift from the BSDS to PASCAL to unwind all the
potential of data-hungry methods such as CNNs and by
observing that BSDS is close to saturation.

Our technique achieves state-of-the-art performance by
a significant margin for contour detection, the estimation
of their orientation, and generic (RGB and RGB-D) image
segmentation. We show that our architecture is modular by
using two different CNN base architectures, which suggests
that it will be able to transfer further improvements in CNN
base architectures to perceptual grouping. We also show
that our method does not require globalization, which was a
speed bottleneck in previous approaches. The generalization
of COB was further demonstrated when applied to high-
level vision tasks (object proposals, object detection, and
semantic contours and segmentation) in combination with
recent pipelines, where the results are improved in all cases.

All our code, CNN models, pre-computed results,
dataset splits, and benchmarks are publicly available at
www.vision.ee.ethz.ch/~cvlsegmentation/.
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