
Requirement and design of safe medical device software architecture

Miklos Kozlovszky1, Khulan Batbayar2, Gernot Kronreif3, Eszter Jósvai4
1,2BioTech Knowledge center, Obuda University, Budapest, Hungary

3,4Austrian Center for Medical Innovation and Technology,Wiener Neustadt,Austria

kozlovszky.miklos@nik.uni-obuda.hu1, batbayar.khulan@phd.uni-obuda.hu2,

gernot.kronreif@acmit.at3, eszter.josvai@acmit.at4

Abstract – Medical surgery robots must operate in

contact with people. In an ideal world 100% safety

can be achieved, the world is not ideal and errors in

software and failures of hardware do occur. We have

designed and build up a prototype safety framework

for surgery robots and trying to implement in an eye

surgery robot software. In this paper we provide

description of its monitoring and inbuilt safety

mechanisms.

INTRODUCTION

In a real world errors in software and failures of

hardware do occur, despite duplication of systems and

extensive testing. Every effort should be taken to ensure

that the system is as safe as possible. The medical robot

is designed to fail in a safe manner and come to a

controlled halt so that it can be removed and the surgical

procedure can be completed manually. Such systems are

keen on controlled stop in the event of a failure and

manual (mechanically assisted) tool retraction can be a

solution in most of the cases. We are focusing on retinal

vein occlusion and membrane peeling robot-assisted

surgery robot. Our software system is developed in

component based fashion, therefore, we are

implementing component-based safety framework

which checks continuously the availability of the

components, collects error messages and reacts to errors

in a pre-configured way. We have identified generic and

component specific error groups. The source of errors in

the system are categorized, and each error type has a

severity level. One important component in the error

handling is the HealthMonitor component, which

monitors the action of all other components. Our error

handling is built up from multiple levels; at the lowest

level the errors captured by the component and the

component is handling the occurred errors with its

inbuilt functionalities, the highest error handling level is

the system level. When an error occurs, the component

tries to fix the problem. The error handling based on the

type and severity level of the error. When the error

handling at component level is not possible, the error is

handled over to the HealthMonitor, which analyses the

problem and initiate system level error handling. has to

ensure that the control can be fully taken over by the

surgeon. Another feature of the HealthMonitor

component is detecting the error based on the incorrect

or erroneous operation which will trigger automatic

messaging to the HealthMonitor component and the

HealthMonitor will take action according to the error.

MATERIALS AND METHODS

In component-based software system, one of the popular

trend is to integrate traditional safety analysis

techniques with a component model. Kaser et al

proposed an idea to convert traditional fault tree

analysis into components which allows partitioning fault

tree into multiple components. Our safety framework

follows Component Fault Tree Analysis to classify

potential errors and estimate severity of the errors.

We are reusing ideas also from Jung et al’s Safety

Framework (SF) which provides runtime software

safety platform for component-based medical and

surgical robot systems. Thus their main idea is to

decompose safety features or implementation into

reusable safety mechanisms and safety specifications.

Our error handling solution adapts, reusable and

modular and extensively reuse features such as ease of

development, error identification and error handling.

RESULTS

Main design requirements

Requirement 1. Robustness

The error handling should be available and able to serve

during the whole system. It should support error

identification, error handling and safe working

environment of all the other components.

Requirement 2. Ease of development

The error handling solution should be easily configured

and used for all system components. The lowest level of

the multi-level error handling should be implemented at

component level.

Requirement 3. Human factor

Since robot-assisted surgery robot software system is

dealing with the sensitive information and patient

safety, human-in-the-loop should be involved in order to

comply with the safe working environment. Surgeon

should be informed during the decision making process

of the safety framework. System should allow full

participation of the surgeon in order to handle critical

condition of the system.

Requirement 4. Monitoring and event handling

The safety framework should be able to monitor each

components failure information as well as its own

failure information. Every failure in the software system

file:///C:/Users/y9cgnu/Downloads/kozlovszky.miklos@nik.uni-obuda.hu1
mailto:batbayar.khulan@phd.uni-obuda.hu
mailto:gernot.kronreif@acmit.at3
mailto:eszter.josvai@acmit.at

has to be notified to the Health Monitor and in parallel

also logged.

Requirement 5. Early identification of possible failures

Based on the log data, if there is a suspicious event

occurs, HealthMonitor should be able to catch the error

and find the possible solution. For each failure, there

should be a set of appropriate solutions and each

solution should be ranked in order to give priority of

execution.

Design of the safe medical device component based

software architecture

System architecture consists of three main mechanisms

which are shown in Figure 1. During the active running

of the system, every action of the system will be

monitored and logged. If there is an unusual pattern or

erroneous action happens, then framework will detect

the error and based on the error intensity, impact and the

state of the error.

Figure. 1. Mechanism view of the safe component

architecture

Safe medical software architecture shown in Figure 2 is

a layered architecture, therefore, error handling is built

in layered fashion. Each component has an error

handling feature built inside and try to solve the

problem inside using exception handling and report it to

the HealthMonitor component. If the error handling in

the component level is not possible, then component

will report to the HealthMonitor to take an action. In

this case, the HealthMonitor will search for the error

information and take a reaction.

Figure. 2. Basic structure of safety framework

Compatibility with safety standards and regulation

body

One of the major part of the medical robot system is that

it has to be approved by regulatory authorities such as

Food and Drug Administration (FDA) depend on the

market of the medical device. Since the main goal of

these standards are to ensure correct, precise working of

the robot and avoid any harm for the patient as well as

the surgeon. We are designing the software architecture

in a safe manner, therefore we are trying to develop

software as safe as possible. Further compatibility will

be studied thoroughly.

CONCLUSION

Medical robot systems are safety critical system which

are specially designed according to the environment,

functionality and regulation requirement. The design of

the requirement is based on the component-based

software systems and safety engineering of the medical

robot software. The fault analysis of the HealthMonitor

component will use Component Fault Tree Analysis to

estimate the failure and possible reaction of the system.

The HealthMonitor component is responsible to fault

detection, fault removal and ability to sustain safe

running environment of the entire software system. The

HealthMonitor component can be applicable to the other

domain of the medical robot system which are built

using component-based architecture.

REFERENCES

[1] B. Kaiser, P. Liggesmeyer, and O. Maeckel. A new

component concept for fault trees. In Proc. of the

8th Australian workshop on Safety critical systems

and software, volume 33 of SCS ’03, pages 37–46.

Australian Computer Society, Inc., 2003.

[2] Min Yang Jung, Peter Kazanzides; Runtime safety

framework for component-based medical robots;

Medical Cyber Physical Systems Workshop

(formerly known as HCMDSS (High Confidence

Medical De- vices, Software, and Systems)),

CPSWeek 2013, Philadelphia, PA, USA, 2013.

[3] A. Kapoor, A. Deguet, and Peter Kazanzides,

Software components and frameworks for medical

robot control, in IEEE Intl. Conf. on Robotics and

Automation (ICRA), May 2006, pp. 3813–3818.

[4] Min Yang JUNG, Marcin BALICKI, Anton

DEGUET, Russell H. TAYLOR, Peter

KAZANZIDES; Lessons learned from the

development of component-based medical robot

systems; Journal of Software Engineering for

Robotics 5(2), September 2014, 25-41 ISSN: 2035-

3928.

