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Abstract—Vitreo-retinal surgery is used as a denominator of
a set of particularly demanding micro-surgical interventions that
take place on the retina at the far side of the eye. The associated
interventions require extreme precise instrument manipulation in
order to be able to safely work on fragile membranes or vessels in
charge of blood circulation. Motions lie close to or even go beyond
the limits of human motion capability. Referral of patients to the
limited number of expert centers is frequent. Some eye problems
require such high levels of precision that they cannot be treated
adequately at present. Affected patients have no effective treat-
ment options and endure a significantly reduced quality of life.
EurEyeCase is a new research project funded under the Horizon
2020 framework that aims at overcoming the present status quo
through progressing robot-assisted ophthalmologic micro-surgery.
This extended abstract introduces the EurEyeCase objectives and
the technology that is being developed.

I. ROBOT-ASSISTED VITREO-RETINAL EYE SURGERY

EurEyeCase focuses on intra-ocular vitreo-retinal eye
surgery, in short VR surgery. VR surgery is characterised by
a wide range of surgical interventions that are close to and
beyond the limits of human capabilities. A significant number
of eye problems can not be treated safely or adequately due to
limitations in achievable dexterity and precision of ‘manual’
instrument positioning. The affected patients experience a
significant reduction of quality of life. The argument for using
robotic technology, namely that it offers new levels of precision
and would be valuable for this particular type of interventions,
has been made already back down in the late eighties by
Charles et al. [1]. Since then several research systems have
made their appearance and this at different research labs
all over the world [2]-[15]. However, up till now, there is
not a single commercial robotic solution on the market that
meets the precision and dexterity needed for vitreo-retinal
surgery. Bourla er al. investigated the feasibility of using the
da Vinci®) surgical system for this procedure, but concluded
the system was not adequate for this purpose. Difficulties
with visualisation were reported. It was also found difficult
to keep the stress at the incision site below acceptable levels
[16]. Recently, a US-based company, is reported to have raised
substantial funding to develop a commercial eye-surgical robot.
However, at this point it is not clear whether the focus will lie

on VR procedures rather than on cataract-removal.

II. VR BASICS AND CLINICAL USE CASES

VR surgery is currently performed manually. At the begin-
ning of the procedure the surgeon carefully puts a selection of
up to four trocars into place at 3 to 4 mm from the corneal
limbus, the border between the cornea and the sclera (Fig.1).
Through these trocars thin instruments are inserted to operate
on the interior part of the eye. The vitreous humour, a gel-like
substance that occupies most of the interior volume of the eye-
ball, can be removed during a so-called vitrectomy [17]. This
can be done to clear out bleeding, to release traction on the
retina or to simplify work in other interventions. The vitreous
humour is replaced by a physiologic fluid which allows smooth
instrument motion and lowers the risk of development of
retinal tears. Due to adhesion between the retina and the
vitreous humour, such tear could develop by simply moving
(slicing) through the vitreous humour.

In some cases membranes have grown over the retina. Such

membranes could deform the retina itself and affect the vision.
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Fig. 1. Anatomy of the eye, focus on structures relevant for VR



By using a dedicated pick and forceps the microsurgeon can
choose to peel these membranes. For epiretinal membrane
peeling (ERM-peeling) a membrane up to about 60um is to
be peeled off from the retina [18]. In the case of ILM peeling
the internal limiting membrane, up to about 4um thick, is to
be removed without damaging the below retina. Application
of excessive forces can give rise to serious complications such
as retinal tears and hemorrhages [19], [20].

The retina can itself be detached from the back of the eye,
which poses a critical situation possibly leading to complete
loss of vision if not treated adequately. By carefully position-
ing the retina back to its place and fixing parts by photo-
coagulating with a high-intensity laser, thus creating fibrosis
for permanent reattachment, retinal detachment repair can be
conducted [21].

Due to venous thrombosis in the lamina cribrosa, the blood
circulation and oxygen supply of the retina gets seriously
disturbed in the case of Retinal Vein Occlusion (RVO) [22],
[23]. Current therapies, such as grid laser and panretinal laser
photocoagulation, have not been found to be effective in
improving visual acuity [24], or are associated with serious
complications [25]. Retinal vein cannulation, i.e. reopening a
thrombotic retinal vein by injecting a thrombolytic agent in
the lumen of the vessel has been proposed in the past [26]-
[28], but ‘manual’ execution has been found problematic [29].
The difficulty lies in the small size of these brittle vessels
in combination with physiological involuntary movements
(tremor) from the surgeon (amplitude is in the order of the
targeted vessel diameter [30], [31]) and the need for prolonged
infusion up to 40 minutes. Piercing of the vessel and injection
of agent in/under the retina could lead to retinoschisis, retinal
detachment, pronounced hemorrhage or toxic damage.

III. EUREYECASE OBJECTIVES

In view of the small size internal and epiretinal membrane
4-60pm and of the retinal veins (40-120pm), compared to the
large amplitude of human tremor (well over 100um), it was
decided in close collaboration with the clinicians to put the
EurEyeCase focus on membrane peeling (ERM and ILM) at
one side and on retinal vein cannulation at the other side. In
particular following scientific objectives will be targeted.

The following four scientific objectives have been iden-
tified: 1) Development of robot-assistance control schemes
for um positioning and mN manipulation surgical tasks; 2)
design of a set of innovative miniature sensorised instru-
ments for vitreoretinal surgery (VR surgery) that help improve
peeling and cannulation tasks; 3) development of a robust
online 3D reconstruction of retina (10Hz); reconstruction based
on stereoscopic images incorporating information from OCT,
pose, contact and force-sensing; 4) conduct clinically relevant
research. The developed robot technology and instruments can
be used to actually conduct clinically relevant research on
complex vitreoretinal surgical techniques such as epiretinal
membrane peeling and vessel cannulation. E.g. research that
shines a light on optimal peeling strategies, or provides insight
in the effect of injection of anticoagulant in the vicinity of
occlusions in retinal veins.

One aspect that will be investigated with additional care is
the question on what kind of operation modus is superior. The

main operation modi in this domain have been so far:

e  hand-held operation [5], [13];
e  co-ordinated manipulation [6], [10], [12];
e teleoperation [2]-[4], [7]-[9], [11], [14], [15].

Pro’s and cons of all approaches have been claimed on several
occassions in the past. However, so far a detailed analysis
and comparision of these operation modi has not been con-
ducted yet. EurEyeCase will set up a detailed experimental
plan to allow fair and objective comparison of 2 of the 3
operation modi, namely comparison of teleoperation [14] and
co-ordinated manipulation, departing from work by Meenink
et al. and from Caers, Gijbels et al., respectively [14] and [12].

IV. EUREYECASE CONSORTIUM

EurEyeCase gathers a consortium of researchers, industri-
als and clinicians that are joining forces to advance the current
state-of-the-art in robotic VR surgery. Fig.2 summarizes the
partners involved in this collaborative project. The consortium
constitutes of 3 academic partners, the University of Leuven
(co-ordinator), the Technical University of Eindhoven and
ETH Ziirich, 1 knowledge center bridging scientific knowl-
edge with medical technology, ACMIT GmbH, 3 medical
device manufacturers of which 1 is set to commercialise
robotic eye surgery (Preceyes, Medical Robotics Technology
BV), and 2 companies offering OCT-technology (OptoMedical
Technologies GmbH, Medical Laser Center Liibeck). Finally,
3 clinical expert centra (University Hospital Leuven, Luigi
Sacco, University of Milan and Rotterdam Eye Hospital),
where directions for further development and feedback on
conducted experiments are given.

V. CONCLUSION

EurEyeCase aims to step up the speed of development
and validation of existing and novel VR technology. It does
so by targeting two relevant (and urgent) clinical indications
namely retinal membrane peeling (ERM and ILM) and retinal
vein occlusion.
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Fig. 2. EurEyeCase Consortium



By approaching the problem in a structured and multi-

faceted, cross-disciplinary fashion, in tight collaboration with
the clinical partners, EurEyeCase aims to lift current systems
and algorithms to higher Technology Readiness Levels (TRLs).

Furthermore, by departing form existing hardware, belong-

ing to two different operation categories, namely: teleoperation
and co-ordinated manipulation, it becomes possible to compare
the value of both operation categories, and this on a fairly short
term. It is expected that this information will be of greater and
more general use to the surgical robotics research community.
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